Archives par mot-clé : si570

3 projets QRP par VU2ESE

VU2ESE - Amplificateur linéaire 25W IRF510 (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2015/07/20131122_081706 NULL.jpg)Farhan VU2ESE, auteur des BITX (http://xv4y NULL.radioclub NULL.asia/2010/05/18/kit-bitx-%e2%80%93-12-en-boite/) et MINIMA (http://xv4y NULL.radioclub NULL.asia/2015/05/21/une-nouvelle-version-du-transceiver-hf-qrp-minima-par-vu2ese/), nous avait récemment fait part de ses expérimentations autour d’une boîte d’accord QRP (http://xv4y NULL.radioclub NULL.asia/2015/07/02/experimentations-autour-dune-boite-daccord-symetrique-par-vu2ese/).

Ces derniers jours il a envoyé sur quelques listes de diffusion l’adresse d’un nouveau site web où il partage trois autres projets (http://hfsignals NULL.blogspot NULL.in/p/about NULL.html) assez innovants :

  • SWEEPERINO (http://hfsignals NULL.blogspot NULL.in/p/sweeperino NULL.html), un générateur de signal / wobulateur / ROSmètre construit autour d’un Arduino, d’un Si570 et d’un détecteur de signal W7ZOI à base d’AD8307.
  • Un amplificateur linéaire 25W bi-bandes 20/40 mètres (http://hfsignals NULL.blogspot NULL.in/p/25-watt-linear-for-40-and-20 NULL.html) à base d’IRF510, pour 2W en entrée et alimentation 30V.
  • Les détails du BITX40 (http://hfsignals NULL.blogspot NULL.in/p/in-hamfest-india-of-2014-kitbag NULL.html) dont le kit a été distribué à la Hamfest India.

Le BitX 40m portable de PE1JXI

Harrie de PE1JXI vient de m’envoyer deux vidéos de sa nouvelle réalisation. Il s’agit d’une magnifique version portable du transceiver BLU BitX version 3 auquel il a ajouté un VFO à Si570, un circuit d’AGC et une alimentation sur batteries Li-On de 6800 mAh. La finition est superbe et l’ensemble offre d’excellentes performances et un très bon confort d’écoute.

Le MINIMA : nouveau transceiver par VU2ESE Farhan

Schéma du MINIMA par VU2ESE (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2014/01/VU2ESE_MINIMA_schematic NULL.png)Farhan de VU2ESE, le père du Bitx, vient d’annoncer son nouveau projet sur la liste Bitx : le MINIMA (http://www NULL.phonestack NULL.com/farhan/minima NULL.html). C’est encore une fois un projet très original du point de vue de l’architecture et des choix techniques réalisés. Une initiative à saluer!

Sans lister les caractéristiques que vous trouverez sur le site du projet (http://www NULL.phonestack NULL.com/farhan/minima NULL.html), le MINIMA est un transceiver QRP BLU/CW à couverture générale avec une puissance de sortie de 1W et une ergonomie simplifiée (un bouton). Voici les principaux points innovants à retenir :

  • Utilisation du Si570 comme oscillateur local.
  • Utilisation d’un ATMega328 (Arduino Nano) comme micro-contrôleur avec un afficheur LCD 16×2. Le code source est disponible librement.
  • Fréquence intermédiaire de 20 MHz avec des quartz d’horloge d’ordinateur.
  • Topologie de filtres originale pour le premier étage (front-end).
  • Mélangeur KISS utilisant deux JFET J310 pilotés par l’OL (et non le signal).
  • Utilisation de transistors courants 2N3904/2N3906 pour tous les étages d’amplification et de mélange, y compris pour la BF.
  • Transmission CW générée par audio.

Selon Farhan, le MINIMA est un des transceivers les plus simples à réaliser et à utiliser. Son architecture le rend très tolérant et donc facile à mettre au point, tout en gardant des performances intéressantes et un bon confort d’utilisation.

Je gardais l’info sous le coude suivant la volonté de Farhan car celui-ci souhaitait mettre en place une liste de diffusion avant de rendre l’information publique. La nouvelle ayant déjà été reprise SolderSmoke et Radioamateur.org (http://www NULL.radioamateur NULL.org/les-news-radio/news-1566-Un-%C3%A9metteur-r%C3%A9cepteur-%C3%A0-couverture-g%C3%A9n%C3%A9rale-Le-Minima) je publie cet article…

Contrôler un Si570 avec le LaunchPad MSP430 par F4DTR

Intérieur Si570 - Photo http://hifiduino.wordpress.com/2012/10/17/inside-the-silicon-labs-si570-programmable-xo/ (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2013/09/Inside_Si570 NULL.jpg)Vous allez le voir, aujourd’hui, c’est un peu la journée du MSP430 avec 3 billets sur le sujet…

Tout d’abord, Jean-Yves de F4DTR a partagé sur le forum de 43oh.com son travail autour du Si570 (http://forum NULL.43oh NULL.com/topic/4380-change-frequency-to-si570-dxo-on-i2c-not-fully-fonctionnal/). C’est un travail en cours et malheureusement il manque de temps pour le faire aboutir. Si vous êtes à l’aise avec l’écriture de code pour le MSP430 sur Energia et que vous souhaitez bénéficier d’un oscillateur agile, stable et de très large gamme couverte, alors donnez-lui un coup de main.

Hilberling ou la revanche du “up-conversion”

Ces derniers jours j’ai eu quelques échanges d’e-mails très intéressant avec Rob Sherwood NC0B (http://www NULL.sherweng NULL.com/). Il m’a fait parvenir ses notes de travail autour du PT-8000A (http://xv4y NULL.radioclub NULL.asia/2012/10/05/le-hilberling-pt-8000-en-tete-de-la-liste-sherwood-engineering/) et les chiffres sont plus qu’impressionnants. Cela montre qu’avec un choix soigneux des composants et un travail sérieux autour de l’architecture de la radio on peut avoir d’excellents résultats. Plus intéressant, il faut noter que la première FI de cette radio est à 40 MHz alors que tous les constructeurs sauf Icom ont récemment utilisé des architectures down-conversion pour obtenir de bonnes performances de résistance aux signaux forts rapprochés. Ceux qui devraient s’inquiéter sont Icom et Yaesu car pour un prix comparable aux IC-7800 et FT-9000, le PT-8000A offre des performances inégalées et des fonctionnalités aussi avancées, la couverture des VHF en plus! Le reste c’est une histoire d’esthétique et de marque…

PT8000-A Distorsion Audio, 10dB et 500Hz/div (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/10/PT8000-A_distorsion_audio NULL.jpg)
PT8000-A Distorsion Audio, 10dB et 500Hz/div

Deux points de mesure ont toutefois soulevé quelques questions. Le premier c’est la première FI qui ne se trouve pas assez atténuée dans les étages suivants du récepteur. Le deuxième c’est une pente d’atténuation anormalement forte et précoce dans l’audio, ainsi qu’un taux de distorsion trop élevé dans l’étage d’amplification audio. Ce qu’il faut noter c’est que Hans Hilberling et Jan Hauschildt (http://hilberling NULL.de/en/en_son/index_en NULL.htm) ainsi que Marcus leur représentant aux USA étaient dans les labos de Rob ces derniers jours et lui ont rendu visite à sa maison de campagne. C’est une démarche volontaire de leur part de faire tester leur bébé et toutes les remarques seront prises en considération pour améliorer le PT-8000A.

Dans nos discussions nous avons aussi fait le parallèle avec le KX3 d’Elecraft et Rob de me faire remarquer qu’il ne faut pas oublier de lire les notes de bas de page ce que beaucoup d’OM daignent de faire. Le KX3 est pour moi un très beau concept et très certainement un excellent poste pour le portable QRP. Le choix de composants “sur étagère” tel que le Si570 (http://xv4y NULL.radioclub NULL.asia/2011/08/24/si570-ou-dds-le-dilemne-de-g0upl/) et d’un traitement de signaux I/Q avec une conversion directe comme les SDR SoftRock est excellent pour avoir de bonnes performances et un prix correct dans un format léger. Je ne vois pas pour autant un KX3 prendre la place d’un K3 ou d’un TS-590s dans le shack d’un DXer ou d’un amateur de concours, même équipé d’un amplificateur 100W. Comme le fait remarquer Rob, les performances du KX3 se dégradent vite en présence de plusieurs signaux puissants dans la bande-passante (saturation du CAN). De plus, bien que le Si570 offre d’excellentes performances en terme de bruit de phase, il “vagabonde” parfois un peu autour de la fréquence d’émission ou de réception. De plus, et c’est un phénomène connu, ce composant n’est pas fait pour “balayer la bande” car ce n’est pas un DDS mais une PLL qui demande du temps pour se verrouiller quand le changement de fréquence est trop important. Cela provoque des “pops” lorsqu’on tourne la commande du VFO rapidement en présence d’un signal fort dans la bande passante. Tout à fait acceptable pour du portable, mais vite lassant pour une utilisation à la station fixe avec des aériens performants.

Dans les jours qui viennent Rob va essayer de refaire des mesures en court-circuitant l’ampli audio par un autre externe. Il continuera ensuite par les mesures d’intermodulation en émission, de réaction du circuit d’ALC et de comportement de l’AGC face aux signaux forts et aux bruits statiques.

Nouveau kits chez K5BCQ : ampli linéaire et panadapter pour le SDR2Go

Kees est vraiment très prolifique et il suffit de ne pas aller sur son site web pour que deux nouveaux kits apparaissent. Je l’ai déjà dit, mais ses produits sont d’excellente facture, utilise des composants de bonne qualité et d’un rapport qualité/prix imbattable à mon avis. La documentation est parfois succincte et ses choix de conception peuvent ne pas convenir à tous les besoins, mais vous choisissez en connaissance de cause.

K5BCQ 20W Amplificateur QRP RD16HHF (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/08/AMPpicture NULL.jpg)Le premier kit (numéro 15 sur la page de Kees (http://www NULL.qsl NULL.net/k/k5bcq/Kits/Kits NULL.html)) est un amplificateur linéaire de 20W à base de RD16HHF1, un peu dans la veine de celui dont je vous parlais il y a quelques jours (http://xv4y NULL.radioclub NULL.asia/2012/08/20/amplificateur-qrp-hf-universel/). Celui de K5BCQ ne comporte pas d’étage driver et est prévu pour 1W maxi en entrée (parfait derrière un SoftRock Ensemble RXTX). Il intègre un SOX (VOX PTT) prévu pour passer automatiquement en émission en présence d’un signal CW, mais qui devrait marcher aussi en BLU. La place sur le PCB et les composants sont prévus pour ajouter un atténuateur en Pi de 3dB en entrée, et un circuit de feedback (rétroaction) est prévu. Bien que pensé pour fonctionner en classe A/B, l’ampli peut être réglé pour fonctionner en classe C si vous n’opérez qu’en CW (ou tous signaux similaires comme WSPR) et que vous souhaitez réduire la consommation. Ce kit ne comporte pas de filtre passe-bas mais un kit est disponible en Australie et Kees dispose aussi des PCB correspondant pour 10 $US. Détail intéressant, les prix dépendent du radiateur que vous choisirez et vont de 50 $US sans radiateur à 60 $US avec soit un radiateur passif de qualité soit un radiateur ventilé mais plus petit. Le port est 7$ sans radiateur, plus si vous voulez un radiateur car ce dernier est lourd.

Picture by K5BCQ/W8NUE of a SDR2Go with panadapter add-on kit (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/08/MiltsLCD NULL.jpg)Le deuxième kit est une addition au SDR2Go, circuit expérimental permettant de faire fonctionner une platine SDR comme le SoftRock de manière autonome (dans l’esprit du SDRCube (http://xv4y NULL.radioclub NULL.asia/2011/11/28/bientot-noel-pour-le-sdr-cube/) mais plus pour les bidouilleurs). Cette platine supplémentaire permet d’ajouter un écran LCD matriciel 128×64 et d’en faire un affichage type analyseur de spectre par exemple (panadapter ou waterfall). Le prix exceptionnel de 20 $US va faire que tous les propriétaires actuels de SDR2Go vont se ruer dessus. A noter qu’il vous faut votre propre écran LCD (on en trouve sur eBay pour moins de 20$) et bien entendu une platine SDR2Go qui elle coûte 80$ port inclus.

Au passage Kees informe que la version 2 du kit contrôleur Si570 est un peu passée aux oubliettes. La raison n’est à mon avis pas technique (c’est en fait la même version que celle incluse dans le SDR2Go) mais plutôt “commerciale”. Il existe aujourd’hui beaucoup de kits autour du Si570 et en ajouter un n’aurait aucun intérêt. Le kit existant de K5BCQ offre l’avantage de la compacité, de la simplicité et du faible coût…

A noter que si vous êtes intéressés par ces kits mais que vous ne parlez pas (ou pas bien) anglais, je suis prêt à faire gracieusement l’intermédiaire avec Kees. Par contre il vous faudra disposer tout de même d’un bon niveau technique car je ne pourrais pas assurer le support “bas niveau” en français ne disposant pas moi-même de tous les kits sous la main. J’attends pour ma part de rassembler un peu de QSJ pour lui commander le kit Wattmètre QRP qui est une merveille technique, mais les priorités changent…

Si570 ou DDS, le dilemne de G0UPL – Partie 3

Suite des précédentes parties 1 (http://xv4y NULL.radioclub NULL.asia/2011/08/24/si570-ou-dds-le-dilemne-de-g0upl/) et parties 2 (http://xv4y NULL.radioclub NULL.asia/2011/08/30/si570-ou-dds-le-dilemne-de-g0upl-partie-2/) de cet article sur une comparaison entre DDS et Si570.

Consommation électrique

Ni le Si570 ni un DDS ne sont réellement économes quand on parle de la consommation électrique. Les deux vont essayer de vider votre batterie avec gloutonnerie, si vous opérez sur batteries bien entendu.

Le Si570 est annoncé avec une consommation de 120 mA à 3,3 V pour la versions LVPECL, ce qui fait 396 mW. Un ADD9912 d’un autre côté demande deux tensions séparées de 1,8 V et 3,3 V pour ses différentes sections (analogiques et numériques). Chaque tension a différentes consommations, mais la datasheet liste des consommations typiques pour différentes configurations. La consommation électrique est entre 637 mW et 747 mW. L’AD9912 a même une plaque de cuivre exposée à l’extérieur pour aider la chaleur à s’en extraire! N’oubliez pas, ceci est avant même que vous ne preniez en compte que le Si570 intègre déjà sa propre horloge de référence, alors qu’un circuit DDS aura besoin que vous lui en fournissiez une, ce qui ajoutera encore une charge sur l’alimentation électrique.

Quelques uns des DDS plus anciens, moins puissants, ont des besoins plus réduits. Mais comme tout mon comparatif s’est fait autour des circuits DDS du haut du panier, en particulier l’AD9912, je dirais qu’ici le Si570 prend l’avantage.

Coût

Aucun des deux n’est bon marché. Le Si570 a un prix comparable à celui de certains DDS bas de gamme mais pour un DDS haut de gamme comme l’AD9910 ou l’AD9912 que j’ai cité auparavant, vous débourserez nettement plus que pour un Si570. De plus, le DDS demande plus de circuits périphériques comme l’horloge externe, qui a peu de chance de se trouver dans un fond de tiroir. D’un autre côté, si vous êtes un radioamateur rusé (et radin), vous avez l’habitude de demande à Analog Device des échantillons gratuits. Vous n’obtiendrez jamais d’échantillons du Si570 par SiLabs. Tout bien pensé, je pense qu’on peut dire que globalement le Si570 gagne sur le plan du coût.

Autres fonctionnalités

Le Si570 est juste un oscillateur basique. Si vous voulez plus de fonctionnalités, vous voulez un DDS. Regardez les datasheets et vous serez plus qu’étonnés! Contrôlez l’amplitude, contrôlez  la phase et même ajoutez une réductions des spurs. Certains circuits DDS contiennent deux coeurs et sorties, qui peuvent être réglées pour être décalées de 90 degrés en phase (pratique pour un mélangeur à conversion directe de type phasing, regardez l’AD9854 (http://www NULL.analog NULL.com/en/rfif-components/direct-digital-synthesis-dds/ad9954/products/product NULL.html)). Automatisez votre modulation d’amplitude, modulation de fréquence, modulation de phase, balayage de fréquence automatique, et tout un tas d’autres possibilités dont je ne peux même pas souvenir ou comprendre. Vous n’en avez probablement pas besoin, ce sont peut-être juste des paillettes et strass pour faire vendre, mais du point de vue fonctionnalités je pense que vous serez d’accord pour dire le DDS est clairement vainqueur.

Complexité globale

Un Si570 est plutôt simple à utiliser. Donnez lui une tension de 3,3 V, connectez-y votre microcontrôleur, ça y est vous êtes prêt.

C’est pas trop ça avec le DDS! Avec un DDS, vous devez avoir quatre sources d’alimentation séparées, propres et bien régulées, certaines à 1,8 V et d’autres à 3,3 V. Vous avez besoin d’une horloge de référence. Certains composants DDS ont un oscillateur intégré où vous pouvez juste y connecter votre quartz. Toutefois pour les meilleures performances vous voudrez clairement concevoir et construire un oscillateur à 1 GHz, ce qui n’est pas un jeu d’enfant, et l’avoir correctement couplé avec les entrées de la puce. Ensuite vous nécessiterez le filtre de reconstruction (typiquement un passe-bas) à la sortie, et ce dernier doit aussi être soigneusement conçu. La carte par elle-même demande pas mal de soins aussi car il y a beaucoup de circuits HF tout autour de votre DDS.

Oui, utiliser un DDS demande beaucoup plus d’efforts qu’un Si570. Donc du point de vue de la complexité, je dirais que le Si570 est là aussi définitivement gagnant.

En résumé

Après tout cela, voici un résumé de mon avis sur les différents critères par lesquels juger ces deux types d’oscillateur. Gardez à l’esprit que chaque application est différente! Dans certaines, certains de ces critères ne sont pas importants du tout, ou bien vos propres priorités sont claires (et opposées à ma conclusion). Dans d’autres applications, vous devez faire face à des compromis inévitables. Performances et complexité, fonctionnalités et coûts, etc. Pour conclure quand même, je vais donc généraliser et travailler de manière bipolaire en donnant mon gagnant pour chaque catégorie sans tenir compte des autres. Je vous laisse juge des priorités selon vos applications.

Catégorie Gagnant
Facilité de construction Si570
Forme d’onde en sortie DDS
Gamme de fréquence Si570
Précision et stabilité en fréquence DDS
Agilité en fréquence DDS
Interface de programmation DDS
Performances : Pureté spectrale Si570
Performances : Bruit de phase DDS
Consommation électrique Si570
Coût Si570
Autres fonctionnalités DDS
Complexité glogale Si570

D’autres lectures

Pour une saine lecture pleine d’inspiration à propos d’un projet de récepteur aux performances ultimes, décrivant les raisons pour lesquelles Martein de PA3AKE a choisi le DDS AD9910 pour son oscillateur, merci de visiter son site (http://www NULL.xs4all NULL.nl/~martein/pa3ake/hmode/). Pour les kits Si570 jetez un oeil chez SDR Kits (http://www NULL.sdr-kits NULL.net/). Il y a des tas de kits DDS disponibles sur la toile, utilisez votre moteur de recherche préféré pour les trouver. Pour d’autres informations intéressantes et des discussions à propos du Si570, aller sur la page Si570 d’Andy G4OEP (http://g4oep NULL.atspace NULL.com/si570index/si570index NULL.htm); tout comme Martein PA3AKE, Andy ne fait jamais les choses à moitié.

Mon favori

Ce qui est le mieux dépend vraiment de vos besoins. Mais si vous êtes toujours en train de me lire, et que vous pensez que je dois quand même donner ma préférence globale, je dirais le DDS. C’est juste comme une couleur préférée, ou un chiffre porte-bonheur, il n’y a aucune vraie raison. C’est juste celui que je préfère!

Si570 ou DDS, le dilemne de G0UPL – Partie 2

Suite du précédent article (http://xv4y NULL.radioclub NULL.asia/2011/08/24/si570-ou-dds-le-dilemne-de-g0upl/) sur une comparaison entre DDS et Si570.

Performances : Pureté spectrale (spurs)

Le Si570 est un oscillateur avec boucle à verrouillage de phase numérique (DPLL) qui produit un signal de sortie rectangulaire. Comme tous les signaux rectangulaires, il est composé d’une fondamentale plus un “peigne” très riche formé par ses nombreuses harmoniques impaires. Si une forme d’onde sinusoïdale est nécessaire et que la plage d’opération est étroite, les composantes indésirables (spurs) peuvent être éliminées par filtrage, et elles seront bien entendu à une distance raisonnable de la fréquence centrale (i.e. à 3, 5, 7… fois la fréquence de la fondamentale). Il y a aussi un peu de puissance présente aux harmoniques paires car la sortie n’est pas garantie pour être une forme d’onde carrée parfaite avec un rapport cyclique de 50%. Les autres composantes indésirables sont très faibles pour le Si570 et ne sont normalement pas considérées comme problématiques.

Les puces DDS ont une mauvaise réputation pour les composantes indésirables! Ceci parce que la forme d’onde en sortie est obtenue par approximation à partir d’une série de niveaux discrets, qui sont ensuite filtrés extérieurement au circuit par votre filtre passe-bas. Le process est de manière inhérente une approximation de la sinusoïde idéale , ce qui génère une réponse impure. Les composantes indésirables sont nombreuses et de différentes amplitudes, elles peuvent aussi se présenter très proche de la porteuse, donc vous ne pourrez pas totalement les éliminer par filtrage.

Certains des DDS Analog Device les plus modernes incluent une technologie “SpurKiller”, comme sur le AD9912 avec deux canaux SpurKiller. Ceci sont en fait deux coeurs DDS en parallèle, dont les fréquences, amplitudes de sortie et phases peuvent être réglées de telle manière que si votre application peut prédire ou mesurer la localisation des impuretés, vous pouvez choisir les deux plus gênantes et les éliminer par annulation. Je pense que la gamme de possibilités pour lesquelles ceci sera réellement utile est quelque peu limitée. La datasheet mentionne que cette fonctionnalité agit de manière optimale avec une légère différence entre chaque circuit, ce qui limiterait son efficacité dans beaucoup d’applications pratiques.

L’importance des problèmes de pureté spectrale dépend principalement de deux facteurs : la résolution du CNA (DAC) et la proportion de la fréquence de sortie relativement à la fréquence de l’oscillateur de référence. Les CNA vont typiquement de 10 bits dans les composants plus anciens jusqu’à 14 bits dans un circuit haut de gamme comme le AD9912. Un CNA de meilleure résolution produira moins de composantes indésirables. De la même manière, si la fréquence de l’oscillateur de référence est très haute vis-à-vis de celle de sortie, les impuretés sont réduites. Le AD9912 peut fonctionner avec une référence montant jusqu’à 1 GHz. Pour une sortie dans la gamme HF de 0 à 30MHz, les impuretés sont très minimes. Pour les VHF ou UHF, elles peuvent être plus gênantes bien sûr. Pour un usage radioamateur, même sur un DDS bas de gamme, les composantes indésirables ont peu de chance d’être un problème dans un usage en émission seule, parce qu’elles sont de niveaux inférieurs aux seuils réglementaires pour les équipements radioamateurs. Dans des applications de réception, les impuretés vont se manifester sous forme de birdies (porteuses fantômes) dans le récepteur et sont un problème plus sérieux. Toutefois, pour un récepteur HF et si vous utilisez un DDS moderne comme l’AD9912 avec une horloge de référence à 1 GHz, alors les composantes indésirables seront très faibles et il est peu probable qu’elles soient audibles dans la plupart des cas.

Un DDS haut de gamme avec une conception soignée ne présentera pas de réponses indésirables dans un cadre limité de circonstances (c-a-d en HF). Le Si570 gagne cette fois car lui il n’a aucun problème de pureté spectrale du tout.

Performances : Bruit de phase

Le bruit de phase peut être vu comme un élargissement de la ligne verticale parfaite que vous devriez voir avec un analyseur de spectre si vous regardez le signal de sortie d’un oscillateur. Une raison pour laquelle c’est si important dans récepteur, c’est qu’il se mélange avec les signaux forts quelques kHz plus loin que le signal désiré pour produire un bruit de fond (plancher de bruit) élevé, qui peut alors facilement cacher un signal faible que vous voudriez écouter. Pour un récepteur de haute performance, il est primordial d’avoir un oscillateur au bruit de phase le plus faible possible.

Les performances des DSS en terme de bruit de phase sont généralement vraiment bonnes. Il y a un peu de jigue (jitter) ajoutée par les imperfections inhérente à l’approximation numérique de la forme d’onde et un peu de bruit de phase ajouté dans des proportions limitées par les imperfections du circuit numérique. Par ailleurs, le bruit de phase d’un DDS ne peut être qu’aussi bon (en réalité un brin moins bon) que celui de l’horloge de référence. Typiquement ce serait un oscillateur à quartz, et les quartz, ayant un Q très élevé, ont de très bonnes performances en terme de bruit de phase. Donc en général, le DDS est considéré comme une technologie à faible bruit de phase.

Beaucoup de puces DDS intégrent un multiplicateur à PLL pour l’horloge de référence. Ce dernier peut être utilisé pour fournir une référence interne à très haute fréquence, jusqu’à la limite donnée pour le composant (c-à-d 1GHz pour l’AD9910), à partir d’une horloge en entrée bien plus faible. Rappelez-vous qu’une horloge de fréquence élevée est meilleure pour une meilleure pureté spectrale, donc le multiplicateur peut être utile dans ce but. Cela peut simplifier grandement votre architecture, mais au prix d’un bruit de phase additionnel dans le processus interne de multiplication par la PLL. Une multiplication de fréquence dans chaque cas comporte un minimum théorique de 6dB par octave (ou 20dB/decade) de pénalité en terme de bruit de phase, mais si vous utilisez la PLL interne vous serez au dessus de ça. En conclusion pour de meilleures performances en bruit de pahse, laissez la PLL en dehors de cette affaire et construisez votre propre oscillateur externe de référence à haute fréquence.

Le Si570 est construit sur une technologie à PLL, qui en principe a un bruit de phase bien plus élevé. Toutefois, dans le Si570, ils minimisent le bruit de phase grace à un design soigné et en utilisant une boucle à bande très étroite. C’est la raison de la présence du long délai (10ms) de sélection de la fréquence. En conséquence le bruit de phase du Si570 est plutôt respectable est sera adéquat pour beaucoup d’usages.

Que dire d’une comparaison entre DDS et Si570 ? Les informations sur les performances en terme de bruit de phase dans certaines des datasheets de DDS sont plutôt limitées. Souvent ils montre le “bruit de phase résiduel”, ce qui veut dire le bruit de phase additionnel qui est ajouté à celui du à l’horloge de référence par le fonctionnement du DDS lui-même. Ce n’est pas le même que le bruit de phase réel que vous observerez sur le signal de sortie – pour cela vous devez aussi ajouter le bruit de phase de l’oscillateur de référence – et donc ce n’est pas directement comparable au bruit de phase d’un Si570. Néanmoins, certaines datasheet de composants DDS donnent un graphique de bruit de phase absolu, et un exemple de ceci est l’AD9912 qui montrent le bruit de phase en sortie pour différentes fréquences de sortie en assumant l’utilisation d’un oscillateur haute performance de Wenzel (http://www NULL.wenzel NULL.com/) à 1 GHz. La datasheet du Si570 a une table de bruit de phase pour trois fréquences de sortie (120 MHz, 156,25 MHz, 622,08 MHz).

Il est important de se rappeler que quand une fréquence est divisée, le bruit de phase lui aussi diminue de 6dB par octave (ou 20dB par décade). Alors dans n’importe quelle comparaison, nous devons prendre ceci en compte si les fréquences mesurées ne sont pas les mêmes. Dans notre exemple de comparaison, j’ai choisi de mettre en regard les données du Si570 à 156,25 MHz avec un graphique de la datasheet de l’AD9912 à 171 MHz. Pour être rigoureux, je devrait faire un ajustement pour cette différence en fréquence (i.e. 156,25 MHz et 171 MHz) en faisant quelques calculs pour les 6 dB/octave. Cela dit, elles sont suffisament proches pour que cela ne fasse qu’environ 1 dB de différence, ce qui dans tous les cas reste dans les marges d’erreur de la précision que je peux avoir en lisant les valeurs depuis le graphique de la datasheet de l’AD9912. En conséquence je vais ignorer cette compensation. Cette petite imprécision pourrait pencher en faveur du Si570 qui a ici la fréquence la plus basse.

Voilà donc une table des valeurs pour 156,25 MHz issues de la datasheet du Si570, et les valeurs correspondantes lues depuis le graphique de la datasheet de l’AD9912. Ces résultats peuvent être considérés comme étant reproductibles avec les deux composants à d’autres fréquences, une fois proprement mis à l’échelle avec 6 dB par octave (20 dB par décade). Les unités du bruit de phase sont en dBc/Hz.

Décalage Si570 AD9912
100 Hz -105 -125
1 kHz -122 -138
10 kHz -128 -148
100 kHz -135 -157
1 MHz -144 -162
10 MHz -147 -163

Ici, les mêmes résultats, présentés sur un graphique :

Comparaison du bruit de phase entre AD9912 et Si570

Ici, la conclusion est qu’un DDS de haut de gamme avec un oscillateur de référence de haute qualité et un bon design (AD9912 avec horloge à 1 GHz), peut dépasser les performances du Si570 de 20 dBc/Hz. Toutefois, je dirais que pour la majorité des applications les performances de bruit de phase du Si570 seront suffisantes, et probablement meilleures que celles de beaucoup de transceiver commerciaux “boîte noire” proposés sur le marché.

Finalement, grace aux excellentes performances de la technologie DDS, je déclare le DDS vainqueur pour cette épreuve.

La suite dans la partie 3. Pour les plus impatients vous pouvez lire la version originale en anglais (http://hanssummers NULL.com/ddssi570 NULL.html), sinon il faudra attendre la semaine prochaine…

Si570 ou DDS, le dilemne de G0UPL – Partie 1

Je vous propose ici une petite traduction d’un article original écrit par Hans Summers de G0UPL (http://www NULL.hanssummers NULL.com/ddssi570 NULL.html). J’ai bien aimé cet article dont le contenu est instructif et j’en ai surtout apprécié le ton décontracté. Lorsque je lui ai demandé son autorisation, Hans a souhaité me préciser qu’il s’agissait plus d’un genre de pied de nez plutôt qu’un article sérieux et théorique. Le débat semble passionner certains et même si ses arguments sont justifiés il ne tient pas à établir son choix personnel comme un dogme. Je laisse la parole à Hans…

Le Si570 est un circuit relativement récent fait par Silicon Labs. C’est un composant très petit contenant un oscillateur de référence à quartz, une boucle à vérouillage de phase (PLL), et une interface I2C afin qu’il puisse être programmé pour n’importe quelle fréquence entre 10MHz et 945MHz (fréquences au choix jusque 1.4GHz). Les circuits à synthèse digitale directe (DDS), comme ceux du leader du marché Analog Devices, sont dans la place depuis plus longtemps. Ils représente un type très différent de composant, même si les deux sont des oscillateurs. En conséquence le meilleur choix dépend grandement de l’application. Voici mon avis à propos des avantages et inconvénients relatifs qui peuvent être des facteurs importants de décision.

Projets

DDS expérimental de G0UPL (http://www NULL.hanssummers NULL.com/dds NULL.html)
DDS expérimental de G0UPL

Emetteur QRSS à base de Si570 par G0UPL (http://www NULL.hanssummers NULL.com/qrss570 NULL.html)
Emetteur QRSS à base de Si570 par G0UPL

Données de référence (bibliographie)

Analog Devices DDS page (http://www NULL.analog NULL.com/en/rfif-components/direct-digital-synthesis-dds/products/index NULL.html)

Analog Devices AD9910 DDS datasheet (http://www NULL.analog NULL.com/static/imported-files/data_sheets/AD9910 NULL.pdf)

Analog Devices AD9912 DDS datasheet (http://www NULL.analog NULL.com/static/imported-files/data_sheets/AD9912 NULL.pdf)

Silicon Labs (http://www NULL.silabs NULL.com/)

Si570 datasheet (http://www NULL.silabs NULL.com/Support%20Documents/TechnicalDocs/si570 NULL.pdf)

Facilité de construction

Comparaison du format des circuits (les photos ne sont pas à l’échelle).

DDS ADD9910 (QFP 100)
DDS ADD9910 (QFP 100)

Si570 (package 7x5 mm)
Si 570 (package 7x5 mm)

Le Si570 est gagnant ici. Il a 8 broches, et bien que ce soit une composant à montage en surface de petite taille, vous pouvez le souder de manière raisonnablement facile même sans circuit imprimé. D’un autre côté, tous les circuits DDS modernes sont en format CMS seulement, par exemple ce DDS AD9910 de 100 broches. Souder celui-ci pattes en l’air serait un vrai défit. Même les générations précédentes de DDS avec des CMS à 28 broches n’étaient pas si faciles que ça à manipuler.

Allure du signal de sortie

Le Si570 a un signal de sortie rectangulaire. Souvent ça convient, par exemple, si vous voulez alimenter un mélangeur : beaucoup de mélangeur opère dans de meilleures conditions si le VFO a un signal rectangulaire. Si vous voulez une belle sinusoïde, il vous faudra alors beaucoup de filtrage passe-bas pour éliminer toute la suite de riches harmoniques.

Les circuits DDS ont une sortie sinusoïdale : elle est générée en sortie par une succession rapide de tension analogiques grâce à un Convertisseur Numérique-Analogique (CNA ou DAC en anglais), qui simule une sinusoïde. Beaucoup de circuits DDS ont un comparateur intégré qui peut être facilement utilisé pour changer la sinusoïde en signal carré si c’est ce dont vous avez besoin. Gardez toutefois à l’esprit que vous aurez d’un filtre passe-bas d’anti-crénelage (ou anti-aliasing) sur la sortie du DDS pour produire un signal propre.

Déclarer le gagnant… dépend de votre application. Si vous voulez une forme d’onde de sortie rectangulaire, le Si570 est parfait. Le DDS convient aussi (s’il est équipé d’un comparateur), pour cette raison mon gagnant c’est le DDS.

Gamme de fréquence

Un DDS descendra jusqu’au courant continu ou presque. La limite haute pratique d’un DDS étant normalement considérée à 40% de son horloge de référence à quartz. C’est une limitation de la synthèse numérique de la forme d’onde, qui est un processus d’échantillonage (voir théorème de Shannon-Nyquist). Les fréquences plus hautes que 40% de l’horloge de référence sont aussi possible en sortie du DAC qui n’est pas filtré, et un signal peut en être extrait avec un filtrage passe-bande adéquat au lieu d’un filtrage passe-bas traditionnel. Les sorties comme celle-ci demande un design plus soigné et les performances ne sont jamais aussi bonnes.

A l’opposé, le Si570 autorise n’importe quelle fréquence entre 10MHz et 945MHz, et une sélection plus limitée de fréquences jusqu’à 1,4GHz. J’ai entendu dire que l’utilisation en dessous des 10 MHz donnés par le constructeur est possible, mais je ne l’ai pas confirmé moi-même.

Ici je dirais que le DDS pourrait gagner si vous voulez être libre de descendre jusqu’à des fréquences très basses, mais le Si570 gagnerait si votre utilisation demande des fréquences très hautes, ou une plage de fréquences continue jusqu’au delà des UHF. Cela dit, parce que le Si570 a une gamme si large et pratique, je le déclare vainqueur.

Stabilité en fréquence

Un DDS a besoin d’une horloge de référence, qui lui est normalement fournie au travers d’un oscillateur à quartz à haute stabilité. C’est à vous de prévoir l’oscillateur de référence. Vous pouvez le faire aussi stable que vous le voulez. L’asservir à un GPS, à un étalon au Rubidium, le mettre dans un four à température constante… comme vous le souhaitez.

Le Si570 a son propre oscillateur à quartz intégré. La différence c’est que vous n’avez pas beaucoup de contrôle sur celui-ci. Vous ne pouvez pas l’ajuster pour être pile sur la fréquence, vous ne pouvez pas l’asservir à une référence GPS (http://www NULL.hanssummers NULL.com/gpsref NULL.html). (Il dispose tout de même d’un petit ajustement de fréquence via l’entrée ADC, mais c’est à vous de mesurer la fréquence réelle, la comparer à un standard et estimer une tension de correction – ce n’est donc pas une vraie solution sauf avec un effort important). Dans ma balise QRSS contrôle par Si570 (http://www NULL.hanssummers NULL.com/qrss570 NULL.html) j’ai trouvé que le Si570 était déjà plutôt précis et stable. Quelques Hertz à côté de la fréquence à 10.140MHz et il ne semblait pas dériver de manière perceptible avec les variations de la température ambiance de la pièce, je n’ai toutefois pas fait de mesures rigoureuses.

A mon avis, si vous avez besoin de stabilité et précision, le DDS gagne ici, parce que vous pouvez le rendre aussi stable et précis que vous le voulez.

Agilité en fréquence

La fréquence d’un DDS peut-être fixée quasi instantanément (tout du moins, aussi vite que vous pouvez la transmettre au circuit intégré)! La plupart des DDS ont une résolution de syntonisation sur 32 bits, et certains même sur 48 bits (comme l’AD 9912) ce qui vous donne une résolution proche de quelques micro-Hz, si vous en avez un jour besoin!

Le Si570 peut aussi être syntonisé par pas très petits mais la fréquence ne change pas instantanément. Quand vous faites un changement de fréquence, il y a un délai qui peut aller jusqu’à 10ms (0,01s) pendant que la PLL interne se vérouille sur la nouvelle fréquence. Cela peut produire un petit clic ou piaillement dans la BF, par exemple, si vous utilisez le Si570 comme un VFO pour votre récepteur. Le Si570 peut aussi être syntonisé beaucoup plus rapidement (100 fois plus vite) pour de petits pas compris dans les  3 500 parties par million (ppm) de la fréquence centrale (NDT : Soit 49KHz à 14 MHz). Dans cas, le temps de verrouillage est inférieur à  0,1ms (100µs).

Ce réglage retardé du Si570 peut le rendre impropre à certaines applications comme les modes de communication numériques où la fréquence doit être changée très vite, ou l’opération en mode “SPLIT”, ou même la télégraphie QSK avec un décalage entre émission et réception (bien que ceci a peu de chances de dépasser les 3 500 ppm).

En conséquence pour l’agilité en fréquence c’est le DDS qui gagne largement si votre usage le demande : changement de fréquence parfait en un clin d’oeil!

Interface de programmation

Les circuits DSS ont une interface de programmation série, et la programmation est aisée. Certains supportent aussi une interface de commande parallèle (un octet à la fois). J’ai construit un générateur DDS qui peut se faire sans micro-contrôleur du tout (voir ici (http://www NULL.hanssummers NULL.com/dds NULL.html)) mais en principe vous utiliserez un micro-contrôleur.

Le Si570 a une interface I2C, et programmer la fréquence est un peu plus délicat, mettant en oeuvre certains calculs de différentes valeurs de diviseur/multiplicateur et la fréquence de l’oscillateur interne contrôlé numériquement. C’est un peu plus complexe que l’envoi d’un simple mot octal pour programmer le DDS, qui est juste une fraction de la fréquence de l’horloge de référence.

Le Si570 n’est quoi qu’il en soit pas un problème si vous êtes raisonnablement compétent pour programmer des micro-contrôleurs, mais un DDS est plus simple et je pense qu’il prend la tête ici.

La suite dans la partie 2. Pour les plus impatients vous pouvez lire la version originale en anglais, sinon il faudra attendre la semaine prochaine…

Kit BitX – 12 : VFO synthétisé Si570

BitX20 version 3 avec VFO synthétisé à base de Si570 (http://capheda NULL.files NULL.wordpress NULL.com/2010/05/100_2340 NULL.jpg)
Transceiver sur le banc de test en attente de mise en boîtier

Comme je vous l’ai raconté il y a peu, j’ai fini d’assembler le kit contrôleur Si570 (http://capheda NULL.wordpress NULL.com/2010/05/07/controleur-pour-si570-de-k5bcq/). J’ai donc entrepris de le tester avec le BitX. Pour ce faire j’ai bien entendu déconnecter le VFO du BitX mais sans dessouder les composants, il y a juste une capa 100nF à retirer. J’ai aussi ajouté un régulateur 7808 en partant la partie “non régulée” de l’alimentation pour fournir les 100mA demandé par le synthétiseur sans charger le régulateur existant. Une alimentation séparée me laisse aussi espérer moins de signaux parasites venant du micro-contrôleur ou du LCD.

Ca marche super! Le signal est très stable, l’écoute très confortable et très peu bruitée, et même sans blindage et avec une connexion en câbles bifilaires, pas trop de signaux parasites sur la fréquence (en fait un seul repéré très haut…).

Maintenant que j’ai aussi trouvé un boîtier il ne me reste plus qu’à percer, couper et coller pour faire tenir le transceiver dedans. Je vais aussi refaire proprement les connexions au plus court et utiliser du câble coaxial quand c’est possible. Le VFO d’origine du BitX sera “désactivé” mais restera en place, je vais aussi coller les différentes selfs et transformateurs sur la platine. Le contrôleur Si570 est bien fait et une petite amélioration pourrait être par exemple de réutiliser les boutons du boîtier lecteur VCD en parallèle de l’encodeur rotatif pour modifier la fréquence et les réglages.