Archives par mot-clé : sdr2go

Kit Analyseur d’impédance vectoriel AQRP VIA par K5BCQ

K5BCQ VIA Analyseur d'impédanceJe discutais avec F4GRT à propos de l’analyseur de réseau scalaire de G4NQX (http://xv4y NULL.radioclub NULL.asia/2015/10/23/un-analyseur-de-reseau-tres-simple-a-base-dad9850-et-arduino-nano/) en me disant que ce serait bien si quelqu’un comme K5BCQ pouvait en proposer un kit. Je suis donc allé sur le site de Kees et ô surprise (http://www NULL.qsl NULL.net/k5bcq/Kits/Kits NULL.html)!
Bon, ok, ce n’est pas un analyseur de réseau mais un analyseur d’impédance, cela-dit les caractéristiques sont très sympas et le prix de 73 USD écran couleur LCD compris très très raisonnable. Il faut ajouter à ça la carte Discovery programmée pour 20 USD et les frais de port vers l’étranger de 26,50 USD, soit en tout moins de 120 $US. C’est le kit numéro 25 sur la page de Kees K5BCQ (http://www NULL.qsl NULL.net/k5bcq/Kits/Kits NULL.html).

Le design est de W8NUE qui utilise la même base de travail que les SDR2GO, modem numérique NUE-PSK et STM32-SDR (http://xv4y NULL.radioclub NULL.asia/2013/12/12/stm32-sdr-un-sdr-iq-autonome-et-opensource/) avec un micro-contrôleur STM32F407 Discovery boards. En bref les points forts :

  • K5BCQ VIA Analyseur d'impédance intérieur (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2015/11/VIAinside2 NULL.jpg)Mesure des tensions (V) et courants (I)
  • Calcule de Z (impédance complexe), Y (admittance complexe), k (pour les français ρ, coéficient de réflexion), RL (Perte en réflexion), VSWR (ROS ou Rapport d’onde stationnaires en tension)
  • Traçage de Z, Y, k, RL, VSWR, et abaque de Smith (pour le coefficient de réflexion). Z et Y sont des tracés de nombres complexes.
  • Curseur vertical sur tous les graphes, indiquant la fréquence.
  • Par défaut la gamme de fréquence va de 1 à 150 MHz, un mode LF alternatif couvre 8KHz à 1MHz.
  • Mode de balayage (scan) manuel et automatique
  • Fréquences de départ et de fin, pas de fréquence et temps de mise en place (en ms) tous configurables.
  • Tous les paramètres sont sauvegardés pour un rappel facile lors de la prochaine mesure.
  • 500 points de mesure peuvent être enregistrés pour être transférés plus tard sur un PC.
  • Alimentation par 6 piles AA ou alimentation à découpage 5V. Une batterie LiPO externe peut être ajoutée pour alimenter l’alim à découpage.
  • Utilise un affichage LCD TFT 320QVT (320×240 pixels, couleur) avec écran tactile résistif, disponible sur eBay.

K5BCQ VIA Analyseur d'impédance menu (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2015/11/VIAp5 NULL.jpg)

K5BCQ VIA Analyseur d'impédance boîtier (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2015/11/K5LNfront NULL.jpg)

STM32-SDR : Un SDR I/Q autonome et OpenSource

C’est une idée qui me trotte dans la tête depuis plusieurs mois mais faute de temps elle n’a jamais dépassé le stade de la théorie et de la recherche documentaire. Lors d’une discussion sur le Groupe Yahoo des transceivers de KD1JV, le sujet est revenu et j’ai donc cherché s’il y avait du nouveau. Et la réponse et oui!

PSK sur le STM32-SDR (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2013/12/psk-qso-ve7pke-and-ve7fky NULL.jpg)Le projet STM32-SDR (http://www NULL.stm32-sdr NULL.com/) permet à partir d’un micro-contrôleur STM32F4 (ou STM32F0) de ST-Micro, de construire un transceiver SDR I/Q autonome en utilisant comme platine RF soit un SoftRock Ensemble RXTX soit un UHFSDR. Je n’ai pas de STM32F4 mais un LM4F du Stellaris LaunchPad de Texas Instruments. Tous les deux utilisent comme coeur un micro-processeur de la famille Cortex-M4 de chez ARM, et le code “DSP” doit être portable de l’un à l’autre. Bien entendu des adaptations seront nécessaire pour l’affichage sur le LCD certainement. Ce projet est en fait la suite du SDR2GO proposé en kit par K5BCQ et ce dernier est aussi dans l’équipe dirigée par VE7PKE.

Aujourd’hui l’échantillonnage se fait à 8 KHz (les CODECs permettent 192 KHz) et 4 KHz du signal I/Q sont utilisés. Bien entendu, des améliorations sont envisagées et le développement en est juste à ses débuts. Deux connecteurs audio stéréo sont prévus pour connecter la platine RF du SDR (signaux I/Q émission et réceptions) et deux connecteurs permettent de relier un casque et un micro. Un connecteur USB est présent mais ne sert pour l’instant qu’à connecter le clavier nécessaire à la transmission des modes numériques. Les modes supportés actuellement sont le PSK31, la BLU et la CW. Les SoftRock (Ensemble RXTX, RXTX6.3 et 6.3BG) et UHFSDR ont été testés, mais en principe n’importe quelle carte dont le Si570 est piloté par I2C doit fonctionner.

La vidéo ci-dessous est assez impressionnante et le projet STM32-SDR permet de décoder et transmettre du PSK-31 avec une interface graphique plutôt réussie, sans besoin d’un micro-ordinateur à côté. Un kit complet et proposé à 209$ (http://stm32sdrcom NULL.fatcow NULL.com/store/page3 NULL.html) pour la carte micro-contrôleur, les convertisseurs analogiques-numériques (149$) et l’écran LCD 3,2″ avec les contrôles (60$). Le logiciel est quant à lui en Open Source avec le code source disponible sur github.

Vidéo réception PSK avec le STM32-SDR (http://www NULL.youtube NULL.com/watch?v=4Fqoq9XVDzU)

Logiciel pour calculer ses propres filtres pour DSP

Si vous aimez expérimenter avec le traitement du signal et des architectures de radios utilisant le SDR Cube ou le SDR2Go, alors vous serez intéresser pour programmer vous-même vos propres filtres numériques.

Cumbria Design FIR Designer (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2013/01/FIR-Designer NULL.gif)J’avais déjà parlé de DFALZ (http://xv4y NULL.radioclub NULL.asia/2012/09/28/calculer-ses-coefficients-de-filtre-pour-dsp/). Cette fois-ci, Cumbria Design propose sur son site web FIR Designer (http://www NULL.cumbriadesigns NULL.co NULL.uk/DSP NULL.htm), un logiciel très complet permettant de calculer des coefficients de filtre suivant différentes méthodes et pour différents processeurs. Les filtres générés sont FIR rectangulaire avec fenêtrage. Ils peuvent être passe-bas, passe-haut, passe-bande, Hilbert et G3PLX. Les fenêtres peuvent être du type Hamming ou Blackman (http://fr NULL.wikipedia NULL.org/wiki/Fenêtrage). Cette dernière fonction fenêtre offrant semble-t-il de meilleures performances pour nos usages (lobe principal plus larges et secondaires plus étroits). Trois formats de sortie sont disponibles, décimal, hexadécimal 16 bits ou hexadécimal  24 bits. Ces filtres peuvent être utilisés sur des DSP 16 bits comme le dsPIC33 qui est le plus courant dans nos montages radioamateurs.

Merci à DF5SF pour l’information.

Nouveau kits chez K5BCQ : ampli linéaire et panadapter pour le SDR2Go

Kees est vraiment très prolifique et il suffit de ne pas aller sur son site web pour que deux nouveaux kits apparaissent. Je l’ai déjà dit, mais ses produits sont d’excellente facture, utilise des composants de bonne qualité et d’un rapport qualité/prix imbattable à mon avis. La documentation est parfois succincte et ses choix de conception peuvent ne pas convenir à tous les besoins, mais vous choisissez en connaissance de cause.

K5BCQ 20W Amplificateur QRP RD16HHF (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/08/AMPpicture NULL.jpg)Le premier kit (numéro 15 sur la page de Kees (http://www NULL.qsl NULL.net/k/k5bcq/Kits/Kits NULL.html)) est un amplificateur linéaire de 20W à base de RD16HHF1, un peu dans la veine de celui dont je vous parlais il y a quelques jours (http://xv4y NULL.radioclub NULL.asia/2012/08/20/amplificateur-qrp-hf-universel/). Celui de K5BCQ ne comporte pas d’étage driver et est prévu pour 1W maxi en entrée (parfait derrière un SoftRock Ensemble RXTX). Il intègre un SOX (VOX PTT) prévu pour passer automatiquement en émission en présence d’un signal CW, mais qui devrait marcher aussi en BLU. La place sur le PCB et les composants sont prévus pour ajouter un atténuateur en Pi de 3dB en entrée, et un circuit de feedback (rétroaction) est prévu. Bien que pensé pour fonctionner en classe A/B, l’ampli peut être réglé pour fonctionner en classe C si vous n’opérez qu’en CW (ou tous signaux similaires comme WSPR) et que vous souhaitez réduire la consommation. Ce kit ne comporte pas de filtre passe-bas mais un kit est disponible en Australie et Kees dispose aussi des PCB correspondant pour 10 $US. Détail intéressant, les prix dépendent du radiateur que vous choisirez et vont de 50 $US sans radiateur à 60 $US avec soit un radiateur passif de qualité soit un radiateur ventilé mais plus petit. Le port est 7$ sans radiateur, plus si vous voulez un radiateur car ce dernier est lourd.

Picture by K5BCQ/W8NUE of a SDR2Go with panadapter add-on kit (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/08/MiltsLCD NULL.jpg)Le deuxième kit est une addition au SDR2Go, circuit expérimental permettant de faire fonctionner une platine SDR comme le SoftRock de manière autonome (dans l’esprit du SDRCube (http://xv4y NULL.radioclub NULL.asia/2011/11/28/bientot-noel-pour-le-sdr-cube/) mais plus pour les bidouilleurs). Cette platine supplémentaire permet d’ajouter un écran LCD matriciel 128×64 et d’en faire un affichage type analyseur de spectre par exemple (panadapter ou waterfall). Le prix exceptionnel de 20 $US va faire que tous les propriétaires actuels de SDR2Go vont se ruer dessus. A noter qu’il vous faut votre propre écran LCD (on en trouve sur eBay pour moins de 20$) et bien entendu une platine SDR2Go qui elle coûte 80$ port inclus.

Au passage Kees informe que la version 2 du kit contrôleur Si570 est un peu passée aux oubliettes. La raison n’est à mon avis pas technique (c’est en fait la même version que celle incluse dans le SDR2Go) mais plutôt “commerciale”. Il existe aujourd’hui beaucoup de kits autour du Si570 et en ajouter un n’aurait aucun intérêt. Le kit existant de K5BCQ offre l’avantage de la compacité, de la simplicité et du faible coût…

A noter que si vous êtes intéressés par ces kits mais que vous ne parlez pas (ou pas bien) anglais, je suis prêt à faire gracieusement l’intermédiaire avec Kees. Par contre il vous faudra disposer tout de même d’un bon niveau technique car je ne pourrais pas assurer le support “bas niveau” en français ne disposant pas moi-même de tous les kits sous la main. J’attends pour ma part de rassembler un peu de QSJ pour lui commander le kit Wattmètre QRP qui est une merveille technique, mais les priorités changent…

Un nouveau PC miniature à 49$

VIA Android PC board (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/05/apc-banana-640x358 NULL.jpg)Vu sur l’excellent site Ars Technica (http://arstechnica NULL.com/gadgets/2012/05/another-tiny-computer-vias-49-apc-offers-android-hdmi-video-out/). La société VIA, très connue pour ses chipsets et microprocesseurs pour micro-ordinateurs et compatibles PC, a annoncé la disponibilité d’un nouveau concurrent du Raspberry Pi et consorts (http://xv4y NULL.radioclub NULL.asia/2012/03/15/beagleboard-raspberry-pi-et-autres-pc-embarques-pour-les-radioamateurs/). C’est le APC ou Android PC qui embarque un processeur ARM (ARM11, donc compatible Android contrairement au Raspberry Pi), 512Mo de RAM, 2 Go de mémoire Flash, des sorties VGA, HDMI et audio, une entrée audio, un port MicroSD, un port Ethernet et 4 ports USB. La carte vendue nue et annoncée comme au format Neo-ITX consomme entre 4 et 13,5 Watts et est livré avec une version adaptée d’Android 2.3.

AllWiner Android PC USB clé (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2012/05/ea687cbe6b22cba6b63b77472f9c876d NULL.jpeg)L’article parle aussi d’un autre micro PC à 74$ mais mieux équipé avec Wifi et un processeur Cortex A8 à 1,5GHz qui fait tourner Android 4.0 (http://arstechnica NULL.com/gadgets/2012/05/new-74-android-mini-computer-is-slightly-larger-than-a-thumb-drive/). Avec tout cela, il y a du choix et avec un peu de chance ces produits seront réellement disponibles (qui a un Rasbperry Pi entre les mains ?)…

BeagleBoard, Raspberry Pi et autres PC embarqués pour les radioamateurs

L’arrivée du Rapsberry Pi (http://www NULL.raspberrypi NULL.org/) a fait beaucoup parlé de cette famille de PC « embarqués ». Les 10 000 premières unités produites ont été précommandées par au moins 200 000 clients ! Un point sur ce qu’ils sont réellement et leur intérêt pour les radioamateurs me paraît nécessaire.

Raspberry Pi (http://img1 NULL.lesnumeriques NULL.com/news/23/23602/rapsberry-pi-mini-pc-35 NULL.jpg)Nous commencerons par les plus anciens de la famille des BeagleBoard (http://beagleboard NULL.org/), projet totalement ouvert, plus destinés à être des « plateformes de développement » selon leurs auteurs et qui sont appuyés par Texas Instrument cherchant ici à développer l’usage de ses processeurs. L’architecture étant ouverte, un industriel peut ensuite produire une série taillée sur mesure de la plateforme correspondant exactement à ses besoins et réduisant les coûts.

Le Rapsberry Pi est plus un produit pour geeks et se veut vendu en masse. Plus fermé conceptuellement, il offre aussi moins de possibilités pour le concepteur du matériel de bidouiller.
Le dernier de la famille, dont nous ne parlerons pas c’est le Cotton Candy (http://www NULL.fxitech NULL.com/products/) : Un PC au format Clé USB plutôt puissant (il embarque un processeur Cortex A9 et 1 Go de RAM) n’offrant en fait aucune vraie entrée-sortie.

Tout d’abord les caractéristiques.

BeagleBoard-xMBeagleBoard originale

  • 125 $
  • Texas Instrument OMAP3530 à 720 MHz (ARM Cortex A8) = 1200 MIPS
  • Processeur graphique PowerVR SGX530
  • DSP TMS320C64x+ pour vidéo HD ou divers traitement du signal (SDR)
  • 128 Mo RAM, 256 Mo Flash
  • Bus I2C/SPI, GPIO, RS-232, JTAG
  • Connecteur USB et USB-on-the-go, lecteur carte MMC/SD
  • Entrée-sortie audio stéréo
  • Sortie DVI et S-Video
  • OS : Android, Ubuntu, WinCE, RISC OS, Symbian…autres Linux

BeagleBoard-xM (différences avec le BeagleBoard original) :

  • 149 $
  • Texas Instrument OMAP3530 à 1 GHz
  • 512 Mo RAM, pas de Flash intégrée
  • Ethernet 10/100
  • Port caméra
  • Lecteur MicroSD (jusque 4 Go)
  • Sortie HDMI (plus de DVI)

Pandaboard ES

PandaBoard ES

  • 182$
  • Texas Instrument OMAP4460 à 1,2 GHz (ARM Cortex A9 bicoeur)
  • Processeur graphique PowerVR SGX540 à 384 MHz
  • DSP TMS320C64x
  • 1 Go de RAM, pas de Flash intégrée
  • Lecteur carte SD (SDHC jusque 32 Go)
  • Ethernet 10/100, Wifi et Bluetooth
  • Bus I2C/SPI, GPIO, RS-232, JTAG
  • Port caméra, Connecteur DSI pour écran LCD
  • USB et USB-on-the-go
  • Sortie DVI et HDMI
  • OS : Android, Ubuntu et RISC OS

Raspberry Pi

  • 35$
  • Broadcom 2763 à 700 MHz (ARM1176JZF-S)
  • 256 Mo RAM
  • Sortie audio stéréo (pas d’entrée)
  • Ethernet 10/100
  • Bus I2C/SPI, GPIO
  • Connecteur DSI pour écran LCD
  • OS : Debian, Fedora, RISC OS
    (l’architecture ARMv6 n’est pas supportée par Ubuntu ou Android)

En faisant une petite recherche sur le web on se rend vite compte que peu de projets tournant sur ces plateformes ont trait au radioamateurisme. Ceci pour plusieurs raisons.

Tout d’abord une grande partie des applications que nous utilisons (cahier de trafic, cluster, modes numériques…) a besoin d’une interface homme-machine (un écran, un clavier en résumé) et ceci n’est pas inclus dans les produits ci-dessus. Le coût au premier abord paraît faible mais quand on y ajoute un écran on arrive vite à celui d’un PC portable premier prix.

SDR2Go avec UHFSDR

Ensuite, pour faire de ces systèmes un contrôleur de radio type SDR, se présentent rapidement deux écueils. Le premier c’est l’absence d’entrée-sortie à grande vitesse (le plus rapide étant le bus USB) pour accéder directement aux données d’un ADC comme sur le HPSDR. Les Beagleboard embarquent bien une entrée-sortie audio stéréo (soient 2 DAC et 2 ADC) mais les circuits sont de piètre qualité, loin des besoins d’une vrai radio SDR. Le deuxième c’est la difficulté pour programmer le DSP embarqué dans ces systèmes. Contrairement à ce qui existe sur d’autres plateformes dédiées au traitement du signal (comme celles utilisées sur le SDR2Go (http://www NULL.qsl NULL.net/k5bcq/Kits/Kits NULL.html) ou le SDRCube (http://www NULL.sdr-cube NULL.com/)), ici tout est à faire ou presque, et cela rebute pas mal de développeurs (voir le portage de GNU Radio sur Beagleboard (http://www NULL.opensdr NULL.com/node/17)).

Quand on regarde bien, le vrai but de ces produits n’est pas de fournir un système polyvalent mais surtout une plateforme « multimédia » comme le sont les smartphones avec qui ils partagent la plupart des composants micro-processeur en tête. Ok ils disposent d’entrées-sorties supplémentaires pour les adeptes de la bidouille, mais celles dont nous aurions besoin !

Un peu après avoir publié cet article j’ai lu un message sur la liste Knight QRSS qui suggérait que ce type de PC embarqué pourrait être parfait pour servir de Grabber QRSS. C’est une application que je n’avais pas envisagé. Seule la PandaBoard a suffisamment de puissance pour servir de décodeur WSPR par contre. A moins de porter les algorithmes de K1JT sur le DSP, mais c’est une autre paire de manches.

Et Arduino ?

En guise de conclusion, comment ces produits se comparent-ils à un Arduino (http://www NULL.arduino NULL.cc/) ? Tour d’abord en terme de performances brutes l’Arduino est largement derrière. Le processeur de l’ArduinoMega est à 16 MHz, 8ko de SRAM, 256Ko de Flash, pas de DSP, pas de circuits vidéos… rien à voir. C’est vrai qu’un Arduino est aussi puissant qu’un ordinateur familial des années 80, et qu’il peut déjà faire pas mal de choses.

La vraie force de l’Arduino c’est d’automatiser des tâches nécessitant beaucoup d’interactions électriques ou électroniques : commandes des relais (pour une balise, un manipulateur CZ) , capturer des valeurs (fréquencemètre, Wattmètre), piloter un bus I2C. Ecrire un tel code sur un Arduino est très simple et permet de concevoir un matériel autonome, fiable, très simple, consommant peu d’énergie et peu coûteux à produire en série si besoin. L’environnement de développement (IDE) de l’Arduino permet de concevoir un tel code en quelques minutes.

Bien entendu, on peut faire la même chose avec un BeagleBoard dont les entrées-sorties GPIO et I2C sont accessibles par des commandes du shell Linux. Honnêtement, c’est un peu utiliser un marteau-pilon pour enfoncer une punaise, et si on veut faire des choses complexes on va sentir le besoin d’un vrai environnement de développement et d’un langage dédié. De plus dupliquer le circuit sera difficile et coûteux et la complexité du matériel (et du logiciel) augmente le risque de panne.