Archives de catégorie : Matériel

Matériel radio, transceivers, amplificateurs et montages divers

Si570 ou DDS, le dilemne de G0UPL – Partie 1

Je vous propose ici une petite traduction d’un article original écrit par Hans Summers de G0UPL (http://www NULL.hanssummers NULL.com/ddssi570 NULL.html). J’ai bien aimé cet article dont le contenu est instructif et j’en ai surtout apprécié le ton décontracté. Lorsque je lui ai demandé son autorisation, Hans a souhaité me préciser qu’il s’agissait plus d’un genre de pied de nez plutôt qu’un article sérieux et théorique. Le débat semble passionner certains et même si ses arguments sont justifiés il ne tient pas à établir son choix personnel comme un dogme. Je laisse la parole à Hans…

Le Si570 est un circuit relativement récent fait par Silicon Labs. C’est un composant très petit contenant un oscillateur de référence à quartz, une boucle à vérouillage de phase (PLL), et une interface I2C afin qu’il puisse être programmé pour n’importe quelle fréquence entre 10MHz et 945MHz (fréquences au choix jusque 1.4GHz). Les circuits à synthèse digitale directe (DDS), comme ceux du leader du marché Analog Devices, sont dans la place depuis plus longtemps. Ils représente un type très différent de composant, même si les deux sont des oscillateurs. En conséquence le meilleur choix dépend grandement de l’application. Voici mon avis à propos des avantages et inconvénients relatifs qui peuvent être des facteurs importants de décision.

Projets

DDS expérimental de G0UPL (http://www NULL.hanssummers NULL.com/dds NULL.html)
DDS expérimental de G0UPL

Emetteur QRSS à base de Si570 par G0UPL (http://www NULL.hanssummers NULL.com/qrss570 NULL.html)
Emetteur QRSS à base de Si570 par G0UPL

Données de référence (bibliographie)

Analog Devices DDS page (http://www NULL.analog NULL.com/en/rfif-components/direct-digital-synthesis-dds/products/index NULL.html)

Analog Devices AD9910 DDS datasheet (http://www NULL.analog NULL.com/static/imported-files/data_sheets/AD9910 NULL.pdf)

Analog Devices AD9912 DDS datasheet (http://www NULL.analog NULL.com/static/imported-files/data_sheets/AD9912 NULL.pdf)

Silicon Labs (http://www NULL.silabs NULL.com/)

Si570 datasheet (http://www NULL.silabs NULL.com/Support%20Documents/TechnicalDocs/si570 NULL.pdf)

Facilité de construction

Comparaison du format des circuits (les photos ne sont pas à l’échelle).

DDS ADD9910 (QFP 100)
DDS ADD9910 (QFP 100)

Si570 (package 7x5 mm)
Si 570 (package 7x5 mm)

Le Si570 est gagnant ici. Il a 8 broches, et bien que ce soit une composant à montage en surface de petite taille, vous pouvez le souder de manière raisonnablement facile même sans circuit imprimé. D’un autre côté, tous les circuits DDS modernes sont en format CMS seulement, par exemple ce DDS AD9910 de 100 broches. Souder celui-ci pattes en l’air serait un vrai défit. Même les générations précédentes de DDS avec des CMS à 28 broches n’étaient pas si faciles que ça à manipuler.

Allure du signal de sortie

Le Si570 a un signal de sortie rectangulaire. Souvent ça convient, par exemple, si vous voulez alimenter un mélangeur : beaucoup de mélangeur opère dans de meilleures conditions si le VFO a un signal rectangulaire. Si vous voulez une belle sinusoïde, il vous faudra alors beaucoup de filtrage passe-bas pour éliminer toute la suite de riches harmoniques.

Les circuits DDS ont une sortie sinusoïdale : elle est générée en sortie par une succession rapide de tension analogiques grâce à un Convertisseur Numérique-Analogique (CNA ou DAC en anglais), qui simule une sinusoïde. Beaucoup de circuits DDS ont un comparateur intégré qui peut être facilement utilisé pour changer la sinusoïde en signal carré si c’est ce dont vous avez besoin. Gardez toutefois à l’esprit que vous aurez d’un filtre passe-bas d’anti-crénelage (ou anti-aliasing) sur la sortie du DDS pour produire un signal propre.

Déclarer le gagnant… dépend de votre application. Si vous voulez une forme d’onde de sortie rectangulaire, le Si570 est parfait. Le DDS convient aussi (s’il est équipé d’un comparateur), pour cette raison mon gagnant c’est le DDS.

Gamme de fréquence

Un DDS descendra jusqu’au courant continu ou presque. La limite haute pratique d’un DDS étant normalement considérée à 40% de son horloge de référence à quartz. C’est une limitation de la synthèse numérique de la forme d’onde, qui est un processus d’échantillonage (voir théorème de Shannon-Nyquist). Les fréquences plus hautes que 40% de l’horloge de référence sont aussi possible en sortie du DAC qui n’est pas filtré, et un signal peut en être extrait avec un filtrage passe-bande adéquat au lieu d’un filtrage passe-bas traditionnel. Les sorties comme celle-ci demande un design plus soigné et les performances ne sont jamais aussi bonnes.

A l’opposé, le Si570 autorise n’importe quelle fréquence entre 10MHz et 945MHz, et une sélection plus limitée de fréquences jusqu’à 1,4GHz. J’ai entendu dire que l’utilisation en dessous des 10 MHz donnés par le constructeur est possible, mais je ne l’ai pas confirmé moi-même.

Ici je dirais que le DDS pourrait gagner si vous voulez être libre de descendre jusqu’à des fréquences très basses, mais le Si570 gagnerait si votre utilisation demande des fréquences très hautes, ou une plage de fréquences continue jusqu’au delà des UHF. Cela dit, parce que le Si570 a une gamme si large et pratique, je le déclare vainqueur.

Stabilité en fréquence

Un DDS a besoin d’une horloge de référence, qui lui est normalement fournie au travers d’un oscillateur à quartz à haute stabilité. C’est à vous de prévoir l’oscillateur de référence. Vous pouvez le faire aussi stable que vous le voulez. L’asservir à un GPS, à un étalon au Rubidium, le mettre dans un four à température constante… comme vous le souhaitez.

Le Si570 a son propre oscillateur à quartz intégré. La différence c’est que vous n’avez pas beaucoup de contrôle sur celui-ci. Vous ne pouvez pas l’ajuster pour être pile sur la fréquence, vous ne pouvez pas l’asservir à une référence GPS (http://www NULL.hanssummers NULL.com/gpsref NULL.html). (Il dispose tout de même d’un petit ajustement de fréquence via l’entrée ADC, mais c’est à vous de mesurer la fréquence réelle, la comparer à un standard et estimer une tension de correction – ce n’est donc pas une vraie solution sauf avec un effort important). Dans ma balise QRSS contrôle par Si570 (http://www NULL.hanssummers NULL.com/qrss570 NULL.html) j’ai trouvé que le Si570 était déjà plutôt précis et stable. Quelques Hertz à côté de la fréquence à 10.140MHz et il ne semblait pas dériver de manière perceptible avec les variations de la température ambiance de la pièce, je n’ai toutefois pas fait de mesures rigoureuses.

A mon avis, si vous avez besoin de stabilité et précision, le DDS gagne ici, parce que vous pouvez le rendre aussi stable et précis que vous le voulez.

Agilité en fréquence

La fréquence d’un DDS peut-être fixée quasi instantanément (tout du moins, aussi vite que vous pouvez la transmettre au circuit intégré)! La plupart des DDS ont une résolution de syntonisation sur 32 bits, et certains même sur 48 bits (comme l’AD 9912) ce qui vous donne une résolution proche de quelques micro-Hz, si vous en avez un jour besoin!

Le Si570 peut aussi être syntonisé par pas très petits mais la fréquence ne change pas instantanément. Quand vous faites un changement de fréquence, il y a un délai qui peut aller jusqu’à 10ms (0,01s) pendant que la PLL interne se vérouille sur la nouvelle fréquence. Cela peut produire un petit clic ou piaillement dans la BF, par exemple, si vous utilisez le Si570 comme un VFO pour votre récepteur. Le Si570 peut aussi être syntonisé beaucoup plus rapidement (100 fois plus vite) pour de petits pas compris dans les  3 500 parties par million (ppm) de la fréquence centrale (NDT : Soit 49KHz à 14 MHz). Dans cas, le temps de verrouillage est inférieur à  0,1ms (100µs).

Ce réglage retardé du Si570 peut le rendre impropre à certaines applications comme les modes de communication numériques où la fréquence doit être changée très vite, ou l’opération en mode “SPLIT”, ou même la télégraphie QSK avec un décalage entre émission et réception (bien que ceci a peu de chances de dépasser les 3 500 ppm).

En conséquence pour l’agilité en fréquence c’est le DDS qui gagne largement si votre usage le demande : changement de fréquence parfait en un clin d’oeil!

Interface de programmation

Les circuits DSS ont une interface de programmation série, et la programmation est aisée. Certains supportent aussi une interface de commande parallèle (un octet à la fois). J’ai construit un générateur DDS qui peut se faire sans micro-contrôleur du tout (voir ici (http://www NULL.hanssummers NULL.com/dds NULL.html)) mais en principe vous utiliserez un micro-contrôleur.

Le Si570 a une interface I2C, et programmer la fréquence est un peu plus délicat, mettant en oeuvre certains calculs de différentes valeurs de diviseur/multiplicateur et la fréquence de l’oscillateur interne contrôlé numériquement. C’est un peu plus complexe que l’envoi d’un simple mot octal pour programmer le DDS, qui est juste une fraction de la fréquence de l’horloge de référence.

Le Si570 n’est quoi qu’il en soit pas un problème si vous êtes raisonnablement compétent pour programmer des micro-contrôleurs, mais un DDS est plus simple et je pense qu’il prend la tête ici.

La suite dans la partie 2. Pour les plus impatients vous pouvez lire la version originale en anglais, sinon il faudra attendre la semaine prochaine…

Le TS-590 sous la pression

Comme vous l’avez déjà compris j’ai maintenant un TS-590 comme nouveau transceiver HF. Je n’ai pas trop trop le temps d’en profiter en soirée et la période estivale de mauvaise propagation n’incite pas à rester longtemps au shack. Toutefois, je découvre ce poste peu à peu et chaque fois je me félicite de mon achat. Je ferais bientôt un billet un peu plus détaillé, peut-être pas un banc “banc d’essai” mais une “prise de contact” avec cet émetteur-récepteur.

Au quotidien, l’excellente ergonomie et les fonctionnalités nouvelles par rapport à mon FT-100 sont un régal. Je découvre aussi quelques points forts du FT-100, en particulier le mode “espacement automatique” du manipulateur électronique qui permettait d’avoir une manipulation bien détachée, et le Noise Blanker du FT-100 qui était plus efficace que celui du Kenwood sur le bruit électrique particulier que j’ai ici entre 19h et 22h locales. Quand la propagation est moyenne et la bande calme, je me rends compte aussi que les performances avancées du TS-590 ne font pas la différence avec le FT-100, par contre l’ergonomie oui, pouvoir changer de bande et de mode en une seul pression sur un bouton rendent l’écoute et la recherche des stations rares plus agréable. Ce n’était d’ailleurs pas un problème de conception de Yaesu, mais plus une erreur de casting car ce poste était plutôt prévu pour le mobile ou le transportable tout-en-un (ce pour quoi je l’avais acheté) que les hautes performances et le trafic DX.

Par contre, samedi dernier après la tempête solaire qui est venue secouer la ionosphère (http://www NULL.spaceweather NULL.com/archive NULL.php?view=1&day=06&month=08&year=2011), de très belles ouvertures se sont fait entendre vers l’Europe sur 17m et 15m (pour le 20 mètres et le Réseau d’Urgences International c’était une autre histoire). Après avoir lancé appel en télégraphie quelques minutes, j’ai eu mon premier “vrai” pile-up depuis plusieurs semaines, et là le Kenwood a révélé toute sa force. La capacité à pouvoir soit choisir un signal particulier (7Q7BP au Malawi (http://dxing NULL.at-communication NULL.com/en/7q7bp_malawi/) par exemple) soit éliminer les perturbateurs (une station RA et une autre IK, toutes deux S9+ qui appelaient en aveugle quelque soit l’indicatif du correspondant) est impressionnante. Les filtres DSP intervenant sur la FI (dans la boucle AGC) éliminent totalement les effets des signaux indésirables. Je sais que je fais un peu l’effet d’un candide, mais j’attends encore de voir comment le poste se comporte durant les concours. Avec le FT-100, certains jours de gros concours sur 20 mètres étaient juste une torture pour le poste et l’OM. J’espère que les roofing-filter du nouveau poste me permettront enfin d’en profiter correctement.

Blazer Electronic Singapour

Boutique de matériel radio à Singapour dans Sim Lim Tower (http://capheda NULL.files NULL.wordpress NULL.com/2011/08/dscn0652 NULL.jpg)Suite à mon précédent billet sur Singapour (http://capheda NULL.wordpress NULL.com/2011/07/29/4-jours-a-singapour/), je vais vous en dire un peu plus sur l’objet de ma visite à Singapour. Je me suis donc rendu à la Sim Lim Tower (http://exposureroom NULL.com/members/danielwee/9586a1afb3bb438d9e54dbc7a9795043/), bâtiment d’une vingtaine d’étages sur Jalan Besar. Je n’ai pas eu le temps ni l’intérêt de faire tous les étages, mais entre le sous-sol (B1), le rez-de-chaussée et le premier étage, plus d’une centaines d’échoppes de matériels électrique ou électronique sont installées. Certaines sont tres spécialisées comme Leo Research (http://www NULL.leoresearch NULL.com/) qui produit des amplificateurs audio à tubes de toute beauté ou un magasin spécialisé dans commandes (du type joystick) pour des robots industriels. A deux pas de là se trouve un autre bâtiment à ne pas confondre : Sim Lim Square (http://www NULL.simlimsquare NULL.com NULL.sg/), spécialisé dans l’informatique et les terminaux mobiles, lieu d’arnaques fréquentes envers les touristes. Un conseil dans ce cas, payez par carte, vous pouvez répudier l’achat facilement.

Revenons à ce qui nous intéresse. J’ai trouvé les prix sur l’électronique plutôt moyen. En tous cas pas moins cher que ce que je peux avoir par internet (sans le port). L’intérêt c’est le choix et la possibilité de manipuler les objets avant d’acheter. Un magasin avait un choix impressionnant de connecteurs HF ou micro, mais je n’avais pas de besoins particuliers. J’ai juste acheté des plaquette circuit imprimé d’essai.

Par contre dans le sous-sol (niveau B1) sont situés côte à côte trois magasin dédiés au matériel radio et vendant du matériel radioamateur. La population radioamateur à Singapour est relativement faible avec une cinquantaine d’OM réellement actifs, mais ces magasins sont souvent distributeurs pour la Malaisie, l’Indonésie et expédient dans le monde entier. Des transceivers d’occasion étaient en vitrine (Icom 756ProII, FT-840, IC-718, FT-897…) mais je ne me suis pas intéressé aux prix. Moi je suis allé dans le plus petit de ces magasins que m’avais recommandé Siva de 9V1SV (http://qrz NULL.com/db/9v1sv). Après contact par téléphone et e-mail, j’y avais réservé un Kenwood TS-590s à ce qui me paraît être le meilleur prix disponible sur Terre.

Monsieur Phua du magasin Blazer Electronic à Singapour (http://capheda NULL.files NULL.wordpress NULL.com/2011/08/dscn0666 NULL.jpg)Blazer Electronic Center (http://www NULL.blazer NULL.com NULL.sg/) propose une gamme très large de matériel mais pour les plus coûteux et les moins demandés il est nécessaire d’effectuer une pré-commande afin que l’approvisionnement soit fait depuis l’usine. L’usine Kenwood étant située à Singapour, le délai était pour moi inférieur à une semaine. Blazer est aussi le distributeur pour Kenwood à Singapour et en Indonésie, ce qui lui garanti de très bonnes relations avec l’usine. M Phua (sur la photo) que j’avais eu au téléphone et par e-mail parle un anglais parfait et a été très prévenant tout au long de la discussion. Le paiement était possible par carte bancaire ou en espèces. Des frais étant apposés sur les transactions par carte (2,5%), j’y ai préféré les espèces (Dollars US fraîchement sortis de la banque) qui m’ont été pris au taux du jour dans les bureaux de change.

Je suis passé lundi en début d’après-midi et M Phua m’a demandé de repasser en soirée le temps qu’il ramène le transceiver de son autre stock. Il pensait que j’allais l’appeler avant de passer. Il me promettait de rester ouvert jusque 22h si j’avais d’autres choses à faire en attendant. Je suis repassé vers 19h et le carton m’attendait. Nous l’avons ouvert ensemble et procédé à un test rapide pour vérifier que l’émetteur-récepteur s’allumait bien et qu’il sortait 100W sur un coup de sifflet. Le prix convenu était de 1820 SGD, soit au change du jour 1620 USD (environ 1000 EUR), ce prix peut varier suivant les taux de change par rapport au Yen. M Phua m’a aussi émis un bon pour récupérer la GST (taxe de 7% équivalente à la TVA) dont on ne récupère qu’une partie bien entendu. Il m’a expliqué la procédure et même décrit où trouver les guichets à l’aéroport! Au passage, le TS-590s était dans un double emballage et est arrivé sans encombres à destination. J’en ai aussi profité pour acheter deux protections contre les décharges statiques dues à la foudre de la marque Opek (http://www NULL.opek NULL.com NULL.tw/LP-350A NULL.htm).

A ma question “Et pour la garantie, qu’en est-il ?”, la réponse de M Phua fut des plus claires : “Il n’y en a pas.”. Les garanties doivent être gérées par le distributeur, et lui a décidé de ne pas faire. Ca explique en grande partie le prix plancher, on ne peut pas tout avoir! Il me dit toutefois “mais bon, s’il y a une panne dans les mois qui viennent l’usine n’est pas mauvais joueur, vous me le ramenez et il répareront sans frais, ils l’ont déjà fait pour un client avec un TS-480”. Selon lui, de toutes façons les pannes sont rares et il n’a jamais eu de problèmes avec Kenwood, qu’en bon commerçant il me dise le contraire m’aurait étonné. Dans tous les cas, pour moi le cas était réglé et la situation était la même avec n’importe quelle marque ou lieu d’achat. Même en payant mon matériel deux fois plus cher en France et en bénéficiant d’une garantie de deux ans, je me voyais mal payer un billet d’avion à 1000 EUR pour venir faire réparer mon poste. Les frais de port entre le Viêt-Nam et la France s’élèvent à environ 300-400 EUR pour 10kg, et il faut faire l’aller-retour, ça fait tout de suite réfléchir! Pour l’instant, les seules pannes dont j’ai entendu parlé sont celles liées à un fusible CMS sous-dimensionné qui dans certains cas rares sauterait. La réparation est faisable à la main pour qui est un peu soigneux et patient. Je prends le risque.

M Phua a plusieurs clients en Europe et aux USA. C’est vrai que même avec les frais de port les tarifs sont avantageux pour qui accepte les règles du jeu. Il s’occupe de l’expédition à prix coûtant et le règlement sera fait par carte bancaire. Si vous êtes intéressés, vous pouvez lui envoyer un e-mail à l’adresse indiquée sur le site web de Blazer (http://www NULL.blazer NULL.com NULL.sg/). Je vous conseille toutefois de passer un coup de fil avant (+6 heures de décalage avec la France) car certains e-mails semblent se perdre…

Petite note : Le Viêt-Nam et Singapour sont tous deux dans l’ASEAN et bénéficient d’accord particulier sur les taxes à l’importation. En particulier, sur le matériel d’émission-réception HF elles sont de 0%. Je ne suis pas sûr que ce soit le cas partout…

Récepteurs à première FI basse – Partie 3

Après tout ce qu’on a dit sur les performances supposées meilleures des récepteurs à première FI basses (en tous cas pour un budget et un usage amateur), il faut toutefois y apporter une petite nuance. Tout le monde ne tirera pas réellement profit du Dynamic range étendu de ces postes. Si vous n’avez qu’une antenne filaire, si vous n’êtes pas fondus de contests, si vous préférez les bandes WARC ou si 90% de votre trafic est en local, tout poste récent devrait vous donner satisfaction. Suivant l’usage, un FT-450, un TS-480 ou un IC-7200 offrent un format pratique, des fonctionnalités riches et un prix tout à fait correct sans négliger l’aspect performances. Le marché de l’occasion est aussi plein de bonnes affaires avec des FT-990 ou FT-1000D (pour ne citer que Yaesu) qui se négocient à des prix corrects, sont aisés à utiliser comme postes fixes et sont encore loués par de nombreux DXeurs de pointe.

Aussi, ne regardez les défauts de jeunesse du poste que vous convoitez. Une grosse avancée des équipements actuels (initiée par Elecraft il me semble) est la possibilité de mettre à jour leur logiciel interne de façon simple. Tous les constructeurs, grands ou petits, corrigent régulièrement les défauts mineurs de leurs postes. Parfois les mises à jour sont même beaucoup plus profondes et touchent même es algorithmes de traitement du signal dans le DSP. Prenons l’exemple du Ten-Tec Eagle, celui-ci semble souffrir d’un traitement du signal de Réduction du Bruit (NR ou Noise Reduction) très peu efficace. Quand on sait que sur d’autres postes que le Jupiter leur algorithme est tout à fait performant, il ne fait pas de doutes que le défaut sera corrigé.

Que regarder réellement pour faire un juste choix alors. Passons sur ce que les postes savent tous bien faire aujourd’hui (sensibilité, stabilité, puissance d’émission, compresseur, mémoires, manipulateur électronique…) et attardons nous sur les défauts souvent tus des équipements actuels. Tout d’abord, la corollaire d’une bonne résistance aux signaux forts se situe dans la qualité du circuit d’AGC. En effet, le but d’un contrôle automatique du gain est justement d’augmenter la plage de dynamique réellement utilisable. Dans les postes modernes elle est complexe car elle doit d’une part s’assurer que le convertisseur analogique-numérique de la dernière FI soit toujours dans la bonne plage d’exploitation et aussi garantir le confort d’écoute. Les récepteurs à DSP sur la FI comportent souvent une AGC à 2, 3 ou 4 niveaux (AGC analogique, AGC avant le filtrage numérique, AGC pour la BF…). La première génération de postes à DSP sur la FI souffrait d’un trou dans l’attaque de l’AGC ce qui pouvait causer de forts désagrément. Aujourd’hui tout semble résolu. De plus la plupart des postes disposent de 3 niveaux d’AGC (rapide, moyenne, lente) parfois paramétrables en attaque et délai et même totalement désactivable (à proscrire car le CAN saturerait très vite). Les derniers postes sortis ne semblent plus souffrir de défauts. Ensuite, point important mais souvent négligé la qualité de la BF. A quoi cela sert d’avoir un récepteur très sensible et filtrant parfaitement les signaux indésirables si la partie audio vient ajouter des sifflements ou des distorsions. Pour les longues périodes d’utilisation, ce défaut sera plus fatiguant que 10dB de moins dans le Dynamic Range. Dans la même veine, l’ergonomie n’est pas à négliger. Personnellement, même si j’apprécie toujours mon FT-100 qui me gratifie de DX et de new-ones régulièrement, je suis écoeuré de son ergonomie “par menu” qui oblige à appuyer sur 10 touches pour faire certaines opérations récurrentes en cours de trafic.

Courbe de sélectivité composite Orion II Ten-Tec (http://capheda NULL.files NULL.wordpress NULL.com/2011/07/bruit-de-phase-orionii NULL.png)On a beaucoup parlé du bruit de phase, c’est un élément déterminant des performances du récepteur et de l’émetteur. Toutefois peu d’efforts sont réellement faits par les constructeurs. On peut toutefois citer l’exemple positif de l’Orion II de Ten-Tec, qui bien que datant d’il y a plus de 5 ans offre un circuit down-conversion très résistant aux signaux forts et un oscillateur local très propre dans son récepteur principal. Le récepteur secondaire est lui à couverture général et moins bien doté. Le graphe ci-contre est issue de son banc d’essai par G3SJX pour RadCom paru en Août 2006, le trait plein montre que le bruit de phase est excellent, même si le FT-5000 doit faire mieux de 10dB aujourd’hui et le TS-590s mieux de 20dB pour son récepteur à première FI basse.

Par ailleurs il ne faut négliger l’aspect émission. La forme de l’attaque du signal en CW est importante pour garantir la meilleure efficacité en terme d’émission. Une attaque trop rapide va étaler le spectre à l’émission et envoyer de la puissance inutilement à plusieurs kiloHertz à côté de la fréquence utile. Le circuit d’ALC est souvent considéré comme problématique. Au moins la moitié des postes de la dernière décennie ont soit une ALC trop agressive qui limite inutilement la puissance transmise et compresse trop fortement le signal créant encore une fois un étalement du spectre transmis. L’ALC peut aussi se mettre à osciller… Dernier problème touchant par exemple le TS-590 ou l’IC-7410 (sans parler des FT-840, IC-706…) et un pic de puissance lors du passage en émission. Même avec une puissance réduite à 60W pour accommoder un amplificateur linéaire legal-limit de 1,5kW (Alpha 9500 par exemple), le transceiver envoie pendant un temps bref toute la puissance (100w) ou plus. Les effets peuvent aller de la simple mis en sécurité de l’amplificateur à une destruction progressive du tube ou des transistors. Dernier point, le niveau des signaux d’intermodulation du troisième ordre ou plus en émission est aussi à surveiller sur les postes utilisant un dernier étage à 13,8V (contrairement à ceux à 40V ou plus). Encore une fois la puissance serait inutilement transmise là où il ne faut pas et surtout vous allez perturber du monde sur une large plage de fréquence…

Les revues parue dans les magazines restent néanmoins de très bonnes références, mais il faut savoir lire entre les lignes et ne pas négliger les petits caractères. Personnellement, je trouve que les revues de l’ARRL publiées dans QST sont parfois subjectives et que certaines mesures sont biaisées (mesure du Dynamic Range qui ne prend pas en compte la limitation par le bruit de phase) pour gonfler un peu les chiffres. Je leur préfère celles du magazine RadCom de la RSGB qui sont généralement l’oeuvre de Peter Hart de G3SJX. Elles ont l’inconvénient d’être faites sur un matériel prêté par les constructeurs et non acheté au hasard dans le commerce comme chez QST. Par contre je trouve que Peter est plus objectif, plus proche de la réalité du terrain et surtout n’hésite pas à comparer les produits et les marques entre elles (ce que vous ne verrez jamais dans un QST récent).

Maintenant je pense que vous attendez une conclusion… et bien je n’en ferais pas dans l’immédiat. Par contre tout vous paraîtra plus clair quand je rentrerai de ma petite semaine de vacances en famille à Singapour. Je vous raconterai ce que j’ai ramené dans mes valises, et pourquoi j’ai fait tout le cheminement de recherche que je viens de vous relater.

Récepteurs à première FI basse – Partie 2

En fait la première FI basse n’avait pas vraiment été abandonnée. Le constructeur américain Ten-Tec a continué à produire d’excellents postes sur ce schéma, sans couverture générale. Son compatriote Elecraft a produit les K1, KX1 et K2 qui ont remis au goût du jour l’idée qu’un amateur pouvait monter un transceiver en kit avec des performances comparables (voire meilleures) que ceux du commerce. Tout ces équipements avaient un point commun : d’excellentes performances en terme de résistances aux signaux forts proches (close-in dynamic range). L’avénement de la Radio Logicielle (SDR) avec des récepteurs à conversion directe (numérisation sur une FI VLF) et même à conversion numérique directe a encore enfoncé le clou sur le point des performances. Après avoir remporté la bataille de la sensibilité (défaut des premiers récepteurs à conversion directe), celle de la sélectivité (défaut des récepteurs à double conversion) on s’engageait dans celle de l’IPO3 (point d’interception du troisième ordre).

C’est vrai que ces derniers années nos bandes sont parfois encombrées les jours de concours. Les stations utilisant plus d’un kiloWatt et des antennes directives à plus de 3 éléments ne sont pas rares. Il est donc parfois difficile de trouver une place entre deux signaux forts et entendre la station lointaine arrivant S2-S3 autour de big-guns arrivant S9+20dB avec des splatters ou des “key-clicks” sur toute la bande est un calvaire. Ca commençait à faire un peu désordre, les gros matous du DX se tournaient vers le transceiver d’une petite boîte américaine au lieu d’acheter les derniers postes à 10.000$ des trois japonais.

Quel est le problème? Il est d’une part technique : il est plus simple et donc moins coûteux de produire un filtre étroit (disons moins de 3KHz) à une fréquence intermédiaire basse (disons 10MHz) que le même filtre en VHF. Si on regarde les postes de l’époque des FT-1000, les premiers filtres vraiment sélectifs sont sur la deuxième FI (celle à 10MHz). Ce qui veut dire qu’un signal fort à tout le loisir de saturer le premier étage (amplificateur, mélangeur…) et de créer de beaux produits d’intermodulation. Les constructeurs ont donc trouvé la solution d’ajouter le roofing-filter (filtre de toiture) sur la première FI (celle en VHF). Pour les postes haut de gamme, ceux qui sont à plus de 5000$, on a le budget pour faire des filtres étroits (6 pôles minimum) de 15KHz, 6KHz et 3KHz. Faire plus étroit (500Hz ou moins pour la télégraphie) n’est possible techniquement qu’à des coûts bien trop élevé. C’est là où les postes à FI basse brillent : ils peuvent embarquer des filtres 1,8KHz pour la BLU étroite ou 300Hz pour la CW étroite sans devoir casser la tirelire. C’est la raison technico-économique : pour un usage amateur, la down-conversion est plus appropriée. Un autre effet négatif de la up-conversion, c’est que pour produire un oscillateur local en VHF il faut souvent multiplier l’OL principal. Si le circuit est du type PLL il souffre d’un bruit de phase non-négligeable, et le faut d’ajouter un étage mélangeur en plus dégrade encore plus les caractéristiques dit de mélange réciproque (le vrai signal est noyé dans des signaux “fantômes”). Avec une FI basse, on peut même utiliser un DDS à des coûts raisonnables pour produire les différents signaux nécessaires, réduisant encore plus le bruit de phase.

Schéma fonctionnel du récepteur de l'IC-7700 (http://capheda NULL.files NULL.wordpress NULL.com/2011/07/schc3a9ma_ic-7700 NULL.png)La deuxième raison c’est que les revues techniques les plus lues se sont focalisées sur cet aspect là des performances car il est un des plus facile à démontrer à l’utilisateur. Contrairement au problème du mélange réciproque assez pernicieux ou celui aussi grave de la pureté spectrale à l’émission (intermodulations dans les amplis transistorisés à FET basse tension) qui ne gêne pas la station propriétaire de l’équipement mais les autres, les qualités de résistance aux signaux forts d’un poste saute à la figure les jours de concours. En particulier si on lit les bancs d’essais parus dans QST de l’ARRL, tout est fait pour mettre en avant les chiffres d’IMD et d’IPO3 en réception. Les autres mesures sont faites, mais rarement mises en avant comme défauts, et pis, dernièrement les méthodologies de mesures ont été revues pour masquer certains défauts. Quand Icom (ou un autre) met un bon filtre de toiture dans l’IC-7700, ça se voit tout de suite en première page avec un chiffre qui perce le plafond du graphe. par contre qu’il ne soigne pas le bruit de phase de son OL ou la linéarité de son amplificateur final en émission, il faut lire les petites lettres… De même pour la SDR, si le Flex-3000 est reconnu comme un excellent récepteur, son ergonomie réelle, ses problèmes de latence en particulier en télégraphie et la pureté de son signal en émission ne font pas que des heureux.

Pourtant il est tout à fait possible de produire un récepteur à triple changement de fréquence qui soit aussi performant ou mieux. C’est ce qui se fait dans le monde professionnel car la couverture générale est une nécessité. Contrairement aux radioamateurs disposant d’allocations de fréquences figées ou presque, le large panel des professionnels ne permet de savoir par avance pour quelle fréquence construire un équipement. Quand on regarde l’étude paru dans QST du XK2100 offert par Ulrich Rohde DJ2LR (de Rohde & Schwarz) à W1AW, on voit ce qu’un récepteur conçu sans compromis ou presque peu faire. Cornell Drentea de KW7CD au travers de son prototype Star-10 décrit dans QEX l’explique clairement : les solutions sont connues mais coûteuses. Son livre “Modern Communications Receiver Design and Technology (http://www NULL.amazon NULL.com/gp/product/1596933097/ref=as_li_tf_tl?ie=UTF8&tag=leschroniquhe-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=1596933097)” revient plus en détail sur les technologies actuelles pour obtenir les meilleures performances en réception. L’utilisation à profusion du DSP a quelque peu changé la donne mais les contraintes restent les mêmes. Entre autres, l’obtention des meilleures performances en terme de mélange réciproque passe par un oscillateur local fonctionnant dans le haut des UHF ou les micro-ondes (1GHz est assez facile à réaliser) que l’on divise ensuite pour obtenir les signaux requis. La norme aujourd’hui reste le contraire : un OL bas (les DDS sont peu onéreux) que l’on multiplie.

Si la sélectivité sur les signaux peu espacés continue à s’améliorer, les mesures et surtout l’utilité réelle à en tirer seront de plus en plus “limitées par le bruit”. A noter qu’à ce jeu le TS-590s de Kenwood s’en tire plutôt bien malgré un design non optimal (synthèse directe par le DDS mais multiplication pour obtenir l’OL de la première FI du RX2). L’IC-7200 qui a fait le même choix ne peut en dire autant…

Que regarder alors quand on choisi un émetteur-récepteur pour les bandes amateurs ? Pour le savoir, vous devrez attendre demain…

Récepteurs à première FI basse – Partie 1

Schéma en bloc du récepteur du Kenwood TS-590 (http://capheda NULL.files NULL.wordpress NULL.com/2011/07/ts-590_block_diagram NULL.jpg)Oh non, je ne compte pas faire un cours magistral sur la technique de la down-conversion. D’autres l’ont déjà fait bien mieux que moi. Je veux juste ici vous résumer mes dernières lectures et les échanges que j’ai pu avoir sur internet avec quelques OM très pédagogues comme Cornell de KW7CD (concepteur du Star 10) ou Rob de NC0B (Rédacteur d’un classement des performances des transceivers amateurs (http://www NULL.sherweng NULL.com/table NULL.html)).

Tout d’abord, cette architecture de récepteur où la première fréquence intermédiaire est basse (autour de 10MHz) était celle utilisée pendant longtemps dans les postes à double changement de fréquence. Elle permettait de s’absoudre des problèmes rencontrés dans les postes à conversion directe et offre des performances globales de haut niveau. Elle présentait toutefois deux inconvénients majeurs : une couverture générale impossible et un choix de la FI délicat pour conserver une plage de fonctionnement VFO optimale et une réjection d’image satisfaisante (on y reviendra). Les postes d’alors étaient “segmentés” et les plus performants comportaient plusieurs VFO dédié à telle ou telle bande. Sur la plupart des émetteurs-récepteurs QRP en kit actuels, c’est encore l’architecture de choix. Si les postes sont monobandes, le choix de la FI peut se faire sans compromis et on obtient des performances de premier rang pour un coût faible et une simplicité de mise en oeuvre appréciables. Le choix de la FI est primordial. Prenons un exemple : vous voulez recevoir du 14MHz, vous choisissez une FI à 10,7MHz (très courant) et un VFO autour de 3,3MHz (facile à faire). Après mélange, vous allez aussi recevoir la fréquence image de 7,4MHz. Vous mettez en entrée du poste un filtre passe-bande centré sur 14MHz pour ne favoriser que cette fréquence et vous vous estimez satisfait. Le problème c’est que sur 7,4MHz sont présents de nombreux émetteurs de radiodiffusion très très puissants, et votre malheureux filtre même réalisé avec le plus grand soin va faire que les signaux de ces émetteurs couvriront la station portable sur une île du Pacifique que vous essayez de faire sortir du bruit. La réjection des fréquences images d’alors était entre 40 et 60dB pour les meilleurs…

Avec l’avénement des circuits transistorisés (Solid-State) et de la PLL, faire un poste à triple changement de fréquence avec une première FI située dans les VHF (typiquement autour de 40MHz puis dans les années 90, 70MHz), résolvait ce problème. La FI étant haute et le VFO agile sur une large plage, une couverture générale était possible et la réjection des fréquences images excellente (supérieure à 90dB). C’est ce qu’on fait les trois (disons 4 avec JRC) gros constructeurs japonais pendant presque 3 décennies et ce qui a produit d’excellents récepteurs. Comme illustration à cet article, je vous met le schéma fonctionnel du récepteur du TS-590 de Kenwood qui comporte en fait 2 circuits : un avec FI basse et un avec FI haute, cela montre bien la différence entre les deux.

Alors pourquoi cet effet de mode de la down-conversion ces quelques dernières années? Pourquoi le K3 d’Elecraft, le FT-5000DX de Yaesu, le TS-590s de Kenwood ou le T-599 Eagle de Ten-Tec comportent-ils tous un récepteur à première FI basse ? C’est mieux diront les plus pressés. En fait la réponse n’est pas si simple. Les vraies raisons sont autant technico-économiques que purement marketing. Je vous dit tout dans un prochain article à venir bientôt… (ouah… de la sueur, de l’argent, du suspens… mieux qu’à la télé)

Bitx – 17 : et maintenant JT65

J’ai continué mes petits essais pour vérifier que tout fonctionnait bien avec Fldigi (http://www NULL.w1hkj NULL.com/) (en PSK31) et JT65-HF (http://sourceforge NULL.net/projects/jt65-hf/files/). Je compte aussi essayer PSKMail (http://www NULL.pskmail NULL.org/) mais le serveur le plus proche est en Australie et ça risque de rendre difficile une utilisation réelle en situation d’urgence.

Premier appel avec 2W (pour une meilleure linéarité) sur 14,070 MHz et réponse immédiate de YC8AHH. Ok c’est du local pour moi mais en début d’après-midi il ne faut pas rêver faire mieux. Les signaux étaient forts sur mon OCF-Dipole et ça m’a permis de valider que le Bitx gérait bien cette situation aussi. De plus, il y a 95% de chances que ce soit la situation qui prévaudra en cas de besoin : contact avec une station proche (Indonésie, Philippines, Thaïlande, Chine, Inde, Japon…) et transmission d’emails pour rassurer les familles. QSO très courtois (comme toujours avec les YB) et validation des objectifs.

Station entendues en JT65 par XV4Y (http://capheda NULL.files NULL.wordpress NULL.com/2011/07/pskreporter NULL.jpg)Un peu plus tard vers 19h (heure locale), je profite que le petit dort et le plus grand regarde la télé pour faire un essai rapide en JT65. Le but c’était de vérifier que le logiciel tournait et qu’il recevait quelque chose. J’ai été vite fixé : 4 stations étaient entendues dont LU8EX situé à mon antipode ou presque (16000km environ). J’essaye de répondre en hésitant un peu car c’est mon premier QSO avec ce mode et tout se déroule sans anicroche aucune! On échange même nos conditions de trafic : 2W et un OCF-Dipole pour moi et 25W et une Yagi 3 élément pour lui. J’ai du attendre plus d’un an pour réussir un QSO avec l’Argentine en BLU et ça a été du sport, mais là JT65 rend les choses presque dégoûtantes de facilité. J’ai enchaîné avec quelques QSO avec des stations proches qui m’appelait et ensuite c’était l’heure de lire une histoire à Paul…

Deux essais concluants, et en particulier pour LU8EX d’une part je n’étais pas sur la verticale mais sur l’OCF-Dipole qui est bien plus basse, et je pense même que la puissance transmise était inférieure à 1W… JT65 est très performant, certes, mais le Bitx s’avère une fois de plus une architecture bien née! Un dernier mot sur les “modes digitaux” : c’est sympa de faire un QSO avec un équipement qu’on a réalisé soit même et d’essayer de nouveaux modes, mais franchement, rester assis devant l’écran à voir les indicatifs défiler ne me branche plus trop…

BitX – 16 : Essais en WSPR

Ca fait un petit moment que j’avais entrepris de modifier mon Bitx20 version 3 pour l’utiliser sur les modes numériques. La principale raison étant qu’avec 5W en SSB il y a peu de choses à faire ici autour, et que la même puissance en PSK31 est suffisante pour faire de bons DX. Une autre raison c’est qu’en situation d’urgence, une station Bitx et micro-ordinateur portable peut-être facilement installée et alimentée sur un onduleur sans même nécessiter le groupe électrogène. Les modes numériques permettent facilement de mettre en place des système de transmission de messages à caractère d’urgence (type NBEMS) (http://www NULL.arrl NULL.org/nbems) et sont plus adaptés pour envoyer des numéros de téléphone, adresses e-mail, etc qui peuvent être utile pour rassurer les familles au cas où un gros typhon viendrait nous isoler du reste de la planète.

A part disposer d’un VFO stable (merci le Si570) pas de besoins particuliers aux modes numériques par rapport à la BLU. Les seules modifications nécessaires étaient :

  • L’ajout d’un atténuateur sur la partie BF réception car le niveau était trop haut pour l’entrée micro du Dell Mini 9. Afin de pouvoir continuer à utiliser le Bitx en écoute, l’atténuateur est commutable.
  • L’ajout d’un potentiomètre de “gain micro” pour régler finement le niveau de modulation.
  • L’ajout d’un système de commutation émission/réception de type VOX pour remplacer la PTT du micro et ne pas nécessiter d’interface particulière avec le PC. Pour ce dernier circuit je me suis inspiré d’un schéma de KH6TY (http://qrz NULL.com/db/kh6ty) publié dans QST en 2009.

En fait tout était fait depuis plusieurs mois et fonctionnait plutôt bien en réception. Par contre en émission j’étais confronté à un problème de ronflette et de sons indésirables. Rien d’insurmontable, mais le temps libre à y consacrer étant mince, les choses avançait lentement.

Premier problème : mauvaise isolation entre canaux droite et gauche de la carte son du Mini9. Je ne sais pas exactement l’origine du problème en fait. Toujours est-il que je voulais utiliser le canal droit pour envoyer un son constant afin de déclencher le VOX et transmettre le signal BF utile sur le canal gauche. Ca fonctionnait, mais je me retrouvais avec un signal 1000Hz sur ma BF… La solution a été de faire déclencher le VOX sur le signal utile. Ca élimine la possibilité d’utiliser la CW audio, mais finalement d’autres modes sont peut-être aussi pratiques.

Deuxième problème : ronflette présente sur la BF transmise. Là c’était du à une erreur de ma part. J’ai voulu réutiliser une platine potentiomètre déjà présente dans le boîtier du lecteur VCD qui héberge mon transceiver (initialement les potentiomètre de micro pour le karaoké). L’erreur c’est que l’autre potentiomètre est utilisé pour piloter la varicap du filtre BF à MAX293 et que les deux potentiomètres partagent une masse commune! J’aurai pu essayer de découpler, de mettre des inductances, etc… mais le mieux c’était de mettre un potar indépendant pour le gain micro.

Session courte WSPR avec le Bitx20 (http://blog NULL.qscope NULL.org/2011/07/wspr_bitx NULL.jpg)Maintenant tout fonctionne bien, et hier j’ai pu faire mes premiers vrais essais avec WSPR sur 20 mètres. Bien qu’il ait été un peu tôt dans la soirée pour une bonne propagation, les 3W que je faisais cracher au BitX m’ont permis d’être entendu en Norvège, Finland et Australie. Par contre en réception je n’ai été capable d’entendre que des stations australiennes. Peut-être que quelques réglages patients sont nécessaires pour optimiser les performances du Bitx, mais le principal soucis venait du PC portable qui a planté 3 fois sous Windows XP. Après la webcam et la batterie qui ont rendu l’âme c’est le disque SSD qui fait des erreurs et crash la machine, les hauts-parleurs déconnent aussi. Conclusion : pour les situation d’urgence ne comptez pas sur Dell!

La prochaine étape c’est de faire des essais avec Fldigi en PSK31 et aussi en JT65 que je n’ai pas encore eu l’occasion d’essayer.

Balise CW à base de micro-contrôleur Arduino

Ca fait un petit moment que je pensais écrire une suite à l’article de vulgarisation autour de la platine Arduino que j’avais fait pour Radioamateur Magazine. Je ne présente plus le concept Arduino si ce n’est en disant que c’est une plateforme complète (matériel, IDE, librairies…) qui permet de développer simplement et rapidement des circuit autour de micro-contrôleurs Atmel MegaAVR.

Balise CW à partir d'une platine Arduino Nano (http://capheda NULL.files NULL.wordpress NULL.com/2011/06/100_3005 NULL.jpg)Je voulais montrer une application simple de l’usage d’un micro-contrôlleur dans le cadre d’une activité radioamateur. Sans partir dans l’accès à des circuits externes comme un écran LCD qui tout en restant simple alourdissent le code et limite la compréhension pour le débutant, il restait peu de possibilités pratiques : un manipulateur Iambic ou une balise CW. Finalement c’est sur le deuxième projet que je me suis reporté sur le deuxième car j’avais un besoin propre pour des essais de propagation sur 80m et 40m que je veux faire en automne.

En avant-première voici le code (très simple) et une photo du montage. A noter que pour le codage de l’alphabet Morse je me suis inspiré du code fait par Hans G0UPL et Steve G0XAR pour le contrôleur de la balise QRSS (http://www NULL.hanssummers NULL.com/qrsskeyer NULL.html). C’est de loin le plus élégant et le plus efficace que j’ai vu. Une description complète et didactique accompagnée d’un code dûment commenté suivra dans un prochain numéro de Radioamateur Magazine dès que j’aurai eu le temps d’écrire un article au propre…

// Balise CW Arduino
// Vitesse variable par potentiomètre entrée A0, commande transistor pin D12 et LED pin D13
// 29/06/2011 par Yannick DEVOS XV4Y
// Codage de l'alphabet par Hans Summers G0UPL et Stephen Farthing G0XAR

// Définition de l'alphabet sous forme binaire
// 0 = dot, 1 = dash
const int A	=	0b11111001;
const int B	=	0b11101000;
const int C	=	0b11101010;
const int D	=	0b11110100;
const int E	=	0b11111100;
const int F	=	0b11100010;
const int G	=	0b11110110;
const int H	=	0b11100000;
const int I	=	0b11111000;
const int J	=	0b11100111;
const int K	=	0b11110101;
const int L	=	0b11100100;
const int M	=	0b11111011;
const int N	=	0b11111010;
const int O	=	0b11110111;
const int P	=	0b11100110;
const int Q	=	0b11101101;
const int R	=	0b11110010;
const int S	=	0b11110000;
const int T	=	0b11111101;
const int U	=	0b11110001;
const int V	=	0b11100001;
const int W	=	0b11110011;
const int X	=	0b11101001;
const int Y	=	0b11101011;
const int Z	=	0b11101100;
const int _SPC	=       0b11101111;
const int _0	=	0b11011111;
const int _1	=	0b11001111;
const int _2	=	0b11000111;
const int _3	=	0b11000011;
const int _4	=	0b11000001;
const int _5	=	0b11000000;
const int _6	=	0b11010000;
const int _7	=	0b11011000;
const int _8	=	0b11011100;
const int _9	=	0b11011110;
const int _BRK	 =      0b11010010;
const int _WAIT  =	0b10000000;

// Format du message : 1er nombre = longueur, Caractères utilisent les constantes pour une équivalence binaire
const int msg[] = {26, X, V, _4, Y, _BRK, B, _SPC, X, V, _4, Y, _BRK, B, _SPC, _1, _0, W, _SPC, P, S, E, _SPC, R, P, T, _WAIT};

const long intervalle = 60000; // (60 secondes ou 1 minute entre chaque transmission)

// Déclaration et initilisation des variables
byte msgIndex = 1;
byte inc_bit = 8;
byte character = _SPC;
boolean start = false;

int vitesse = 100;

byte key = 0;
byte etat = 0;
long dern_trans = 0;
long maintenant = 0;

void setup()  { 
  // on declare les pattes 12 (transistor) & 13 (LED intégrée) comme sorties
  pinMode(12, OUTPUT);
  pinMode(13, OUTPUT);
} 

void loop()  { 

  msgIndex = 1;

  while (msgIndex < msg[0]+1) {
    vitesse = 50 + round(analogRead(A0)/8);

    character = msg[msgIndex];

    inc_bit = 8;

    if (character == _SPC) {
        delay (9*vitesse); //
        inc_bit = 0;
    }
    if (character == _WAIT) {
        while (maintenant < (dern_trans + intervalle)) {
          maintenant = millis();
          delay (100);
        };
        dern_trans = millis();
        inc_bit = 0;
    }

    while (inc_bit) {

      etat = bitRead(character,inc_bit-1);

      if (start) {
        if (etat)
          key=3;
        else
          key=1;

        while (key) {
          digitalWrite(12, HIGH);
          digitalWrite(13, HIGH);
          delay (vitesse);
          key--;
        }

        digitalWrite(12, LOW);
        digitalWrite(13, LOW);
        delay (vitesse);
      }

      if (!etat && !start) start=true;

      inc_bit--;

    }
    delay (2*vitesse);

    start = false;
    msgIndex++;

  }

}

Bang, quand votre alim fait Bang…

Je ne sais pas si je l’ai déjà dit, mais mon shack est à l’extérieur, sur la terrasse du deuxième étage. Ca a beaucoup d’avantage : toujours un peu d’air frais, facilité pour vérifier si les invités des chambres d’hôtes rentrent du restaurant ou sortent de leur chambre pour demander un service, proximité des antennes et câbles très courts… Ca a aussi des inconvénients : nécessité de rentrer les équipements en cas de pluies avec vents violents, soleil dans la figure au levant et surtout bestioles qui se baladent. Notez que pour les bestioles j’aurais les même mais un peu moins à l’intérieur. La particularité des pays tropicaux c’est qu’on est souvent en copropriété avec tout un tas de bébêtes… Ca va du moucheron qui se coince dans les contacts du manip au coléoptère qui vient se placer entre les deux leviers et vous empêche de manipuler en passant par le moustique qui vous bourdonne dans les oreilles en plein QSO.

Hier matin j’allume le décamètrique pour écouter un peu l’activité. Rien à signaler de particulier, je le coupe mais je laisse l’alim 12V en marche puis je vaque à d’autres occupations plus rémunératrices et plus nobles aux yeux de XYL. Tout à coup un “paf” très bruyant (le bureau est à 10m du shack) retentit et nous fait sursauter la comptable et moi. J’accoure auprès du transceiver pour voir que l’alim est en sécurité et qu’elle dégage de la fumée. Je coupe tout puis retourne à mon travail la mort dans l’âme. En fin d’après-midi je prends 10 minutes pour ouvrir l’alim, une MFJ-4125 (http://www NULL.mfjenterprises NULL.com/Product NULL.php?productid=MFJ-4125) que je trouve excellente et qui nous le prouvera encore une fois. Avec le “paf” caractéristique du condensateur qui devient feu d’artifice je m’attendais à trouver pas mal de dégâts. En fait, rien de visible. Je fais une dernière vérification visuelle et puis je rebranche l’alim et la met sous tension. Avec le capot ouvert le “paf” et l’arc électrique étaient encore bien plus surprenant! Je coupe l’alim à nouveau et cette fois-çi le fusible 220V-6A a lâché. C’est donc pas si simple. Il est tard, il fait nuit, je remet ça à demain.

Nous sommes demain, et je m’arme d’un chiffon, de cotons-tiges et d’alcool à brûler enfin d’enlever toute la poussière grasse qui s’est accumulée sur le circuit. J’ajoute aussi un peu d’isolant électrique autour des éléments “à nu” qui pour moi ont arqué avec la carlingue de l’alimentation. J’avais remarqué que le ventilo et le voyant s’allumaient lors du dernier “essai”, ça veut donc dire que le 12V (13,5V pour être précis) est bien là. Je remet sous tension et “paf” encore un bel arc, mais l’alim ne se met pas en sécurité… Demi-consolation, mais l’arc est ailleurs car je ne l’ai pas vu cette fois.

Il faut donc que je démonte le circuit-imprimé de la carlingue pour voir en dessous. 3 vis à retirer et quelques fils à dessouder plus tard, j’arrive à extraire le PCB. Devinez qui je trouve en dessous, un petit margouillat (http://fr NULL.wikipedia NULL.org/wiki/Hemidactylus_frenatus) qui a voulu essayer une électro-thérapie de choc. Je passe les détails, mais il s’est trouvé au pire endroit et il ne reste plus grand chose de lui. Au passage il m’a fait griller une piste et donc je suis parti pour une séance de nettoyage et rafistolage. Ce n’était pas le premier à rentrer dans l’alim. Les trous du ventilos sont petits mais laissent passer les plus petits des margouillats et les bébés “tacké (http://fr NULL.wikipedia NULL.org/wiki/Gekko_gecko)“. J’ai aussi retrouvé de leurs oeufs dans le FT-100 une fois… Ajouter une grille peut-être une solution, mais par 30°C la bonne ventilation des équipements est nécessaire et une grille est toujours néfaste.

L’alim fonctionne à nouveau normalement, et j’en profite au passage pour dire qu’après plus de 10 ans de service elle est toujours aussi bonne. Aucun bruit présent en HF, tension qui tient bien sous 20A, ventilateur normalement bruyant à mon goût, taille minime et connectique suffisante, prix le plus bas du marché à mon avis. Un essai comparatif de QST avait d’ailleurs consacré toutes ses qualités face à des modèles même plus chers. Le gros défaut de MFJ reste sa qualité variable dans le temps. Un conseil si vous n’avait pas le service de garantie à proximité : ouvrez le capot de vos équipements MFJ et faites une inspection visuelle des soudures et câblages principaux avant l’utilisation, ça ne coûte rien et ça ne fait pas sauter la garantie.