Archives de catégorie : Matériel

Matériel radio, transceivers, amplificateurs et montages divers

Nouveautés chez Ten-Tec

Vu sur le groupe Yahoo Ten Tec Eagle (http://groups NULL.yahoo NULL.com/group/TenTec_Eagle/), quelques nouveautés intéressantes ont été dévoilées lors des journées portes ouvertes chez Ten Tec la semaine dernière. L’afable John Henry n’a pas hésité à donner toutes les précisions.

Transceiver Ten Tec Model 439 QRP HF (http://qrper NULL.com/wp-content/uploads/2011/09/Ten-TecModel539 NULL.jpg)Tout d’abord un nouveau transceiver HF QRP arrivera bientôt. Toutes bandes et délivrant 10W, le Ten-Tec Model 539. il se veut un concurrent du FT-817 pour un format un peu plus grand, mais surtout une qualité et des performances bien supérieures. L’électronique devrait être la même que celle de l’Eagle, c’est dire! Au niveau des amateurs de QRP le digne successeur de l’Argo ou plus récemment du K2 d’Elecraft. Plus d’informations sur ce site web (http://qrper NULL.com/2011/09/ten-tec-model-539-ten-tecs-new-qrp-transceiver/).

Cet émetteur récepteur sera accompagné d’un nouvel amplificateur 100W pour ceux désirant un peu plus de puissance quand ils sont à la maison. Le Ten Tec Model 418 (http://qrper NULL.com/2011/09/ten-tecs-new-100-watt-amplifier-the-ten-tec-model-418-photos-and-preliminary-specifications/) devrait bien entendu fonctionner avec le matériel d’autres constructeur.

Dernière nouveauté, les transceiver Orion et Orion II se verront offrir un nouveau récepteur secondaire en option. Là encore les performances seront de haut vol puisqu’il s’agirait ni plus ni moins du récepteur de l’Eagle 599. L’Orion n’étant pas un équipement d’entrée de gamme, nul doute que beaucoup de ses possesseurs feront la mise à jour pour bénéficier du top en matière de réception. Une mise à jour du firmware (logiciel interne) sera nécessaire.

Banc d’essai de l’IC-7410 chez Sherwood Engineering

Ca m’avait échappé et Rob de NC0B n’en ayant pas fait plus étalage que ça je n’avais pas vu l’information. Ses tests (plutôt poussés et faisant référence) du dernier poste d’Icom l’IC-7410 (http://www NULL.icom-france NULL.com/produit-ic-7410 NULL.php) ont été publiés sur sa célèbre liste du classement des performances des récepteurs radioamateurs (http://www NULL.sherweng NULL.com/table NULL.html).

Icom IC-7410 vue de faceAutant le dire tout de suite, c’est plutôt pas brillant face à la concurrence (j’ai nommé Kenwood avec le TS-590s). Il arrive en 24e position du classement fait par les caractéristique de réponse dynamique pour signaux rapprochés (Dynamic Range Narrow Spaced). C’est juste moins bien que l’IC-7600 (pas de première jeunesse) et un peu mieux que le TS-590s mais dans son mode “FI haute” (up-conversion). C’est moins bien qu’un K2 d’Elecraft, qu’un TS-590s en “FI basse”, que les Eagle, Orion et Orion II de Ten-Tec, qu’un K3 et bien entendu que le FT-5000 qui est sur la première marche du podium. Je ne cite là que les postes récents comparable. Tous les SDR de Flex Radio font mieux aussi.

En soit ce n’est pas un drame. L’IC-7410 est très certainement une très bonne radio (les commentaires sur eHam (http://www NULL.eham NULL.net/reviews/detail/9658)sont bons) Et à part donner un chiffre le classement ne garantit pas plus de succès au DXCC pour les utilisateurs d’un poste ou l’autre. Là où ça me gêne plus c’est que comme toujours Icom met en avant les performances du poste. Son prix dans la version de base (avec un filtre de 15KHz) le place un peu au dessus du Kenwood TS-590s et bien au dessus du FT-950 de Yaesu. Si on y ajoute des filtres 6KHz ou 3KHz (le Kenwood a un filtre de 500Hz en mode FI basse, ne l’oublions pas), les prix s’envolent…

J’aimerai bien lire la revue de QST qui va paraître à l’automne concernant ce transceiver. Je ne sais pas si RadCom en aura une aussi. Toutefois, en regardant la vidéo de prise de contact qu’a publié l’ARRL, je reste dubitatif devant l’ergonomie de l’engin. Beaucoup trop de menu et sous-menus à mon avis. Ca flatte l’OM qui a l’impression de piloter une centrale nucléaire, mais au niveau pratique, je pense qu’on s’en lasse rapidement.
Voir la vidéo de prise de contact qu’a publié l’ARRL (http://www NULL.youtube NULL.com/watch?v=jLa7kizlAYM)

 

Au final je trouve qu’Icom fait payer un peu cher sa came. Pas qu’elle soit mauvaise, mais faut aimer Icom. Des marques telles que Ten-Tec ou Elecraft peuvent le justifier car elles sont sur un marché de niche. Icom? Pour l’achat d’un poste décamétrique (+160m +6m bien entendu) moyenne gamme (entre 1000 et 2000 €), mon tiercé reste :

  • Yaesu FT-450d si vous êtes limité par le budget (mais faiblesses mécaniques connues, premier filtre très large, ergonomie limitée),
  • Yaesu FT-950 si vous aimez Yaesu avec un poste qui trône fièrement sur votre bureau (mais filtre 3KHz qui ne fait pas mieux que le 6KHz, boîte d’accord automatique un peu lente et limitée, réglages pointus, ergonomie qui ne plaît pas à tous),
  • Kenwood TS-590s qui est pour moi le meilleur rapport qualité/prix (vous pensez que j’allais vous dire que j’ai gaspillé mes sous!).
Pour moi, dans ce classement, chaque denier dépensé en plus vous le rendre en performance ou service rendu. Après, c’est une histoire de goûts, et il y a plein d’autres postes sur le marché qui offrent des fonctionnalités, formes de boîtier ou performances différentes.

Balun 4:1 sur tore ferrite FT240-61

Quand j’ai décidé de transformer ma delta-loop 40m (http://xv4y NULL.radioclub NULL.asia/xv4tuj-station-radioamateur-en-ok20ua/antenne-filaire-delta-loop-sur-40m-avec-balun-41/) en OCF-Dipole 80m (http://xv4y NULL.radioclub NULL.asia/xv4tuj-station-radioamateur-en-ok20ua/ocf-dipole-804020-et-10-metres/), une des raisons de ce choix était de pouvoir conserver le balun 4:1 (http://xv4y NULL.radioclub NULL.asia/xv4tuj-station-radioamateur-en-ok20ua/antenne-filaire-delta-loop-sur-40m-avec-balun-41/balun-41-sur-air/) que j’avais fait et donc pouvoir revenir en arrière facilement.

Bien que le balun ne semblait pas être une source de problème et que j’ai pu faire quelques QSO DX (dont Hawaï à 10.000km) malgré les conditions estivales difficiles (fort QRN du aux typhons et orages permanent en cette saison), je me suis tout de même demandé s’il n’y avait pas là moyen de gagner quelques dB.

Vous trouverez la solution que j’ai décidé d’essayer dans l’article détaillé sur ce nouveau balun 4:1 sur tore FT240-61 (http://xv4y NULL.radioclub NULL.asia/xv4tuj-station-radioamateur-en-ok20ua/ocf-dipole-804020-et-10-metres/balun-41-sur-tore-ft240-61/) pour mon antenne bandes-basses.

Si570 ou DDS, le dilemne de G0UPL – Partie 3

Suite des précédentes parties 1 (http://xv4y NULL.radioclub NULL.asia/2011/08/24/si570-ou-dds-le-dilemne-de-g0upl/) et parties 2 (http://xv4y NULL.radioclub NULL.asia/2011/08/30/si570-ou-dds-le-dilemne-de-g0upl-partie-2/) de cet article sur une comparaison entre DDS et Si570.

Consommation électrique

Ni le Si570 ni un DDS ne sont réellement économes quand on parle de la consommation électrique. Les deux vont essayer de vider votre batterie avec gloutonnerie, si vous opérez sur batteries bien entendu.

Le Si570 est annoncé avec une consommation de 120 mA à 3,3 V pour la versions LVPECL, ce qui fait 396 mW. Un ADD9912 d’un autre côté demande deux tensions séparées de 1,8 V et 3,3 V pour ses différentes sections (analogiques et numériques). Chaque tension a différentes consommations, mais la datasheet liste des consommations typiques pour différentes configurations. La consommation électrique est entre 637 mW et 747 mW. L’AD9912 a même une plaque de cuivre exposée à l’extérieur pour aider la chaleur à s’en extraire! N’oubliez pas, ceci est avant même que vous ne preniez en compte que le Si570 intègre déjà sa propre horloge de référence, alors qu’un circuit DDS aura besoin que vous lui en fournissiez une, ce qui ajoutera encore une charge sur l’alimentation électrique.

Quelques uns des DDS plus anciens, moins puissants, ont des besoins plus réduits. Mais comme tout mon comparatif s’est fait autour des circuits DDS du haut du panier, en particulier l’AD9912, je dirais qu’ici le Si570 prend l’avantage.

Coût

Aucun des deux n’est bon marché. Le Si570 a un prix comparable à celui de certains DDS bas de gamme mais pour un DDS haut de gamme comme l’AD9910 ou l’AD9912 que j’ai cité auparavant, vous débourserez nettement plus que pour un Si570. De plus, le DDS demande plus de circuits périphériques comme l’horloge externe, qui a peu de chance de se trouver dans un fond de tiroir. D’un autre côté, si vous êtes un radioamateur rusé (et radin), vous avez l’habitude de demande à Analog Device des échantillons gratuits. Vous n’obtiendrez jamais d’échantillons du Si570 par SiLabs. Tout bien pensé, je pense qu’on peut dire que globalement le Si570 gagne sur le plan du coût.

Autres fonctionnalités

Le Si570 est juste un oscillateur basique. Si vous voulez plus de fonctionnalités, vous voulez un DDS. Regardez les datasheets et vous serez plus qu’étonnés! Contrôlez l’amplitude, contrôlez  la phase et même ajoutez une réductions des spurs. Certains circuits DDS contiennent deux coeurs et sorties, qui peuvent être réglées pour être décalées de 90 degrés en phase (pratique pour un mélangeur à conversion directe de type phasing, regardez l’AD9854 (http://www NULL.analog NULL.com/en/rfif-components/direct-digital-synthesis-dds/ad9954/products/product NULL.html)). Automatisez votre modulation d’amplitude, modulation de fréquence, modulation de phase, balayage de fréquence automatique, et tout un tas d’autres possibilités dont je ne peux même pas souvenir ou comprendre. Vous n’en avez probablement pas besoin, ce sont peut-être juste des paillettes et strass pour faire vendre, mais du point de vue fonctionnalités je pense que vous serez d’accord pour dire le DDS est clairement vainqueur.

Complexité globale

Un Si570 est plutôt simple à utiliser. Donnez lui une tension de 3,3 V, connectez-y votre microcontrôleur, ça y est vous êtes prêt.

C’est pas trop ça avec le DDS! Avec un DDS, vous devez avoir quatre sources d’alimentation séparées, propres et bien régulées, certaines à 1,8 V et d’autres à 3,3 V. Vous avez besoin d’une horloge de référence. Certains composants DDS ont un oscillateur intégré où vous pouvez juste y connecter votre quartz. Toutefois pour les meilleures performances vous voudrez clairement concevoir et construire un oscillateur à 1 GHz, ce qui n’est pas un jeu d’enfant, et l’avoir correctement couplé avec les entrées de la puce. Ensuite vous nécessiterez le filtre de reconstruction (typiquement un passe-bas) à la sortie, et ce dernier doit aussi être soigneusement conçu. La carte par elle-même demande pas mal de soins aussi car il y a beaucoup de circuits HF tout autour de votre DDS.

Oui, utiliser un DDS demande beaucoup plus d’efforts qu’un Si570. Donc du point de vue de la complexité, je dirais que le Si570 est là aussi définitivement gagnant.

En résumé

Après tout cela, voici un résumé de mon avis sur les différents critères par lesquels juger ces deux types d’oscillateur. Gardez à l’esprit que chaque application est différente! Dans certaines, certains de ces critères ne sont pas importants du tout, ou bien vos propres priorités sont claires (et opposées à ma conclusion). Dans d’autres applications, vous devez faire face à des compromis inévitables. Performances et complexité, fonctionnalités et coûts, etc. Pour conclure quand même, je vais donc généraliser et travailler de manière bipolaire en donnant mon gagnant pour chaque catégorie sans tenir compte des autres. Je vous laisse juge des priorités selon vos applications.

Catégorie Gagnant
Facilité de construction Si570
Forme d’onde en sortie DDS
Gamme de fréquence Si570
Précision et stabilité en fréquence DDS
Agilité en fréquence DDS
Interface de programmation DDS
Performances : Pureté spectrale Si570
Performances : Bruit de phase DDS
Consommation électrique Si570
Coût Si570
Autres fonctionnalités DDS
Complexité glogale Si570

D’autres lectures

Pour une saine lecture pleine d’inspiration à propos d’un projet de récepteur aux performances ultimes, décrivant les raisons pour lesquelles Martein de PA3AKE a choisi le DDS AD9910 pour son oscillateur, merci de visiter son site (http://www NULL.xs4all NULL.nl/~martein/pa3ake/hmode/). Pour les kits Si570 jetez un oeil chez SDR Kits (http://www NULL.sdr-kits NULL.net/). Il y a des tas de kits DDS disponibles sur la toile, utilisez votre moteur de recherche préféré pour les trouver. Pour d’autres informations intéressantes et des discussions à propos du Si570, aller sur la page Si570 d’Andy G4OEP (http://g4oep NULL.atspace NULL.com/si570index/si570index NULL.htm); tout comme Martein PA3AKE, Andy ne fait jamais les choses à moitié.

Mon favori

Ce qui est le mieux dépend vraiment de vos besoins. Mais si vous êtes toujours en train de me lire, et que vous pensez que je dois quand même donner ma préférence globale, je dirais le DDS. C’est juste comme une couleur préférée, ou un chiffre porte-bonheur, il n’y a aucune vraie raison. C’est juste celui que je préfère!

Analyseur de spectre UHF de poche à 16$

Analyseur de spectre homemade (http://1 NULL.bp NULL.blogspot NULL.com/_P0xofdCgmno/S5_6-f9SvCI/AAAAAAAAAXg/QR3ZknC7Gs0/s1600/wide NULL.jpeg)Bon, je suis un peu pris par le temps et je ne pourrais pas faire une traduction de cet article. Google s’en chargera avec plus ou moins de bonheur pour ceux qui ne sont pas à l’aise en anglais.

L’info m’a été transmise par Aravind de VU2ABS qui l’avait reçu d’un groupe de diffusion parlant du Baofeng UV-3R. Un OM américain a reprogrammé un petit IM-Me (http://uk NULL.girltech NULL.com/electronics-imMe NULL.aspx) (Messagerie instantanée, ou pager bidirectionnel pour un usage privatif) à 16$ en un analyseur de spectre couvrant  281 – 361, 378 – 481, and 749 – 962 MHz.

Beau jouet! L’article en anglais est ici sur un blog (http://ossmann NULL.blogspot NULL.com/2010/03/16-pocket-spectrum-analyzer NULL.html).

Concours All Asian DX Phone

Ce week-end c’est le concours international organisé par la JARL, partie BLU. Comme tous les ans je compte être actif et cette année je devrai même avoir un peu plus de temps libre que l’année dernière. Je serai en principe sur 15m la journée et 20m en soirée. Si les conditions le permettent, je pointerais mon nez sur 10m et pourquoi pas 80m.

Hier j’ai profité d’un déplacement professionnel à Saïgon pour acheter un peu de câble RG-58 (merci OK radio (http://www NULL.maybodam NULL.com/vn/?frame=category&cat=372), toujours aussi commerçants) et surtout pour rencontre Vincenç de EA3WD (http://qrz NULL.com/db/ea3wd) avec qui j’avais fait QSO il y a quelques temps et surtout pas mal échangé par e-mail. OM très sympa avec qui on a pas mal en commun dont l’activité professionnelle et la relation particulière avec le Viêt-Nam. On espère bien pouvoir faire un contest ensemble un de ces jours.

Pic de puissance à l’émission sur le TS-590s : solution en vue

Stu de MM0BSM nous a fait part sur le Groupe Yahoo dédié au Kenwood TS-590s de bonnes nouvelles qui lui ont été données par Kenwood.

Pour mémoire, le nouveau poste de Kenwood n’a que deux petits défauts considérés par certains comme gênants. L’un d’eux est un mal commun à de nombreux transceivers actuels chez tous les constructeurs : une conception du circuit d’ALC pouvant amener à des pics de puissance lors du passage en émission.

La difficulté pour Kenwood c’est que ce problème ne concerne que les OM voulant connecter leur poste à un amplificateur linéaire à gain élevé qui demande moins de 100W en entrée (typiquement 60W). Dans ce cas, certains OM ont pu voir que de manière transitoire très brève un pic de puissance jusque 100W pouvait survenir lors du passage en émission. Ce pic peut déclencher les sécurités de l’amplificateur linéaire et à terme en causer la défaillance.

Kenwood avait déjà apporté un correctif avec la mise à jour du firmware 1.02, mais certains utilisateurs continuaient à voir leur transceiver souffrir de ce mal. L’image du constructeur en était écornée et bien que la communication officielle soit restée succincte, une information avait été reçue comme quoi les ingénieurs au Japon s’étaient équipés d’un amplificateur linéaire et travaillaient pour reproduire et éliminer le problème.

La bonne nouvelle c’est qu’il semblerait que Kenwood ait enfin trouvé une solution. Elle est matérielle, et dans le courant de la semaine prochaine les instructions vont être transmises aux importateurs (ici Kenwood UK) pour la tester chez les OM qui en expriment le souhait. Si la solution est effective, on peut supposer qu’elle sera appliquée en usine et étendue aux postes revenant entre les mains de services en charge de la garantie.

Encore une fois, la difficulté avec ce problème c’est que d’une part relativement peu d’OM utilisent le TS-590 derrière un amplificateur à gain élevé, d’autre part tous ne constatent pas le défaut qui mesuré avec des équipements précis s’avère variable d’un poste à l’autre.

C’est rassurant de voir Kenwood prendre à coeur ce problème sur un équipement de milieu de gamme. La bataille commerciale fait rage et chaque pas en avant est apprécié. Pour rassurer Kenwood, de nombreux postes récents (même très très récents) semble montrer un comportement d’ALC pire, et les réactions des constructeurs ne sont pas toujours celles qu’on attend. Pour ma part, je trouve le TS-590 parfait, et je vous doit toujours un petit banc d’essai qui viendra courant septembre je l’espère…

Si570 ou DDS, le dilemne de G0UPL – Partie 2

Suite du précédent article (http://xv4y NULL.radioclub NULL.asia/2011/08/24/si570-ou-dds-le-dilemne-de-g0upl/) sur une comparaison entre DDS et Si570.

Performances : Pureté spectrale (spurs)

Le Si570 est un oscillateur avec boucle à verrouillage de phase numérique (DPLL) qui produit un signal de sortie rectangulaire. Comme tous les signaux rectangulaires, il est composé d’une fondamentale plus un “peigne” très riche formé par ses nombreuses harmoniques impaires. Si une forme d’onde sinusoïdale est nécessaire et que la plage d’opération est étroite, les composantes indésirables (spurs) peuvent être éliminées par filtrage, et elles seront bien entendu à une distance raisonnable de la fréquence centrale (i.e. à 3, 5, 7… fois la fréquence de la fondamentale). Il y a aussi un peu de puissance présente aux harmoniques paires car la sortie n’est pas garantie pour être une forme d’onde carrée parfaite avec un rapport cyclique de 50%. Les autres composantes indésirables sont très faibles pour le Si570 et ne sont normalement pas considérées comme problématiques.

Les puces DDS ont une mauvaise réputation pour les composantes indésirables! Ceci parce que la forme d’onde en sortie est obtenue par approximation à partir d’une série de niveaux discrets, qui sont ensuite filtrés extérieurement au circuit par votre filtre passe-bas. Le process est de manière inhérente une approximation de la sinusoïde idéale , ce qui génère une réponse impure. Les composantes indésirables sont nombreuses et de différentes amplitudes, elles peuvent aussi se présenter très proche de la porteuse, donc vous ne pourrez pas totalement les éliminer par filtrage.

Certains des DDS Analog Device les plus modernes incluent une technologie “SpurKiller”, comme sur le AD9912 avec deux canaux SpurKiller. Ceci sont en fait deux coeurs DDS en parallèle, dont les fréquences, amplitudes de sortie et phases peuvent être réglées de telle manière que si votre application peut prédire ou mesurer la localisation des impuretés, vous pouvez choisir les deux plus gênantes et les éliminer par annulation. Je pense que la gamme de possibilités pour lesquelles ceci sera réellement utile est quelque peu limitée. La datasheet mentionne que cette fonctionnalité agit de manière optimale avec une légère différence entre chaque circuit, ce qui limiterait son efficacité dans beaucoup d’applications pratiques.

L’importance des problèmes de pureté spectrale dépend principalement de deux facteurs : la résolution du CNA (DAC) et la proportion de la fréquence de sortie relativement à la fréquence de l’oscillateur de référence. Les CNA vont typiquement de 10 bits dans les composants plus anciens jusqu’à 14 bits dans un circuit haut de gamme comme le AD9912. Un CNA de meilleure résolution produira moins de composantes indésirables. De la même manière, si la fréquence de l’oscillateur de référence est très haute vis-à-vis de celle de sortie, les impuretés sont réduites. Le AD9912 peut fonctionner avec une référence montant jusqu’à 1 GHz. Pour une sortie dans la gamme HF de 0 à 30MHz, les impuretés sont très minimes. Pour les VHF ou UHF, elles peuvent être plus gênantes bien sûr. Pour un usage radioamateur, même sur un DDS bas de gamme, les composantes indésirables ont peu de chance d’être un problème dans un usage en émission seule, parce qu’elles sont de niveaux inférieurs aux seuils réglementaires pour les équipements radioamateurs. Dans des applications de réception, les impuretés vont se manifester sous forme de birdies (porteuses fantômes) dans le récepteur et sont un problème plus sérieux. Toutefois, pour un récepteur HF et si vous utilisez un DDS moderne comme l’AD9912 avec une horloge de référence à 1 GHz, alors les composantes indésirables seront très faibles et il est peu probable qu’elles soient audibles dans la plupart des cas.

Un DDS haut de gamme avec une conception soignée ne présentera pas de réponses indésirables dans un cadre limité de circonstances (c-a-d en HF). Le Si570 gagne cette fois car lui il n’a aucun problème de pureté spectrale du tout.

Performances : Bruit de phase

Le bruit de phase peut être vu comme un élargissement de la ligne verticale parfaite que vous devriez voir avec un analyseur de spectre si vous regardez le signal de sortie d’un oscillateur. Une raison pour laquelle c’est si important dans récepteur, c’est qu’il se mélange avec les signaux forts quelques kHz plus loin que le signal désiré pour produire un bruit de fond (plancher de bruit) élevé, qui peut alors facilement cacher un signal faible que vous voudriez écouter. Pour un récepteur de haute performance, il est primordial d’avoir un oscillateur au bruit de phase le plus faible possible.

Les performances des DSS en terme de bruit de phase sont généralement vraiment bonnes. Il y a un peu de jigue (jitter) ajoutée par les imperfections inhérente à l’approximation numérique de la forme d’onde et un peu de bruit de phase ajouté dans des proportions limitées par les imperfections du circuit numérique. Par ailleurs, le bruit de phase d’un DDS ne peut être qu’aussi bon (en réalité un brin moins bon) que celui de l’horloge de référence. Typiquement ce serait un oscillateur à quartz, et les quartz, ayant un Q très élevé, ont de très bonnes performances en terme de bruit de phase. Donc en général, le DDS est considéré comme une technologie à faible bruit de phase.

Beaucoup de puces DDS intégrent un multiplicateur à PLL pour l’horloge de référence. Ce dernier peut être utilisé pour fournir une référence interne à très haute fréquence, jusqu’à la limite donnée pour le composant (c-à-d 1GHz pour l’AD9910), à partir d’une horloge en entrée bien plus faible. Rappelez-vous qu’une horloge de fréquence élevée est meilleure pour une meilleure pureté spectrale, donc le multiplicateur peut être utile dans ce but. Cela peut simplifier grandement votre architecture, mais au prix d’un bruit de phase additionnel dans le processus interne de multiplication par la PLL. Une multiplication de fréquence dans chaque cas comporte un minimum théorique de 6dB par octave (ou 20dB/decade) de pénalité en terme de bruit de phase, mais si vous utilisez la PLL interne vous serez au dessus de ça. En conclusion pour de meilleures performances en bruit de pahse, laissez la PLL en dehors de cette affaire et construisez votre propre oscillateur externe de référence à haute fréquence.

Le Si570 est construit sur une technologie à PLL, qui en principe a un bruit de phase bien plus élevé. Toutefois, dans le Si570, ils minimisent le bruit de phase grace à un design soigné et en utilisant une boucle à bande très étroite. C’est la raison de la présence du long délai (10ms) de sélection de la fréquence. En conséquence le bruit de phase du Si570 est plutôt respectable est sera adéquat pour beaucoup d’usages.

Que dire d’une comparaison entre DDS et Si570 ? Les informations sur les performances en terme de bruit de phase dans certaines des datasheets de DDS sont plutôt limitées. Souvent ils montre le “bruit de phase résiduel”, ce qui veut dire le bruit de phase additionnel qui est ajouté à celui du à l’horloge de référence par le fonctionnement du DDS lui-même. Ce n’est pas le même que le bruit de phase réel que vous observerez sur le signal de sortie – pour cela vous devez aussi ajouter le bruit de phase de l’oscillateur de référence – et donc ce n’est pas directement comparable au bruit de phase d’un Si570. Néanmoins, certaines datasheet de composants DDS donnent un graphique de bruit de phase absolu, et un exemple de ceci est l’AD9912 qui montrent le bruit de phase en sortie pour différentes fréquences de sortie en assumant l’utilisation d’un oscillateur haute performance de Wenzel (http://www NULL.wenzel NULL.com/) à 1 GHz. La datasheet du Si570 a une table de bruit de phase pour trois fréquences de sortie (120 MHz, 156,25 MHz, 622,08 MHz).

Il est important de se rappeler que quand une fréquence est divisée, le bruit de phase lui aussi diminue de 6dB par octave (ou 20dB par décade). Alors dans n’importe quelle comparaison, nous devons prendre ceci en compte si les fréquences mesurées ne sont pas les mêmes. Dans notre exemple de comparaison, j’ai choisi de mettre en regard les données du Si570 à 156,25 MHz avec un graphique de la datasheet de l’AD9912 à 171 MHz. Pour être rigoureux, je devrait faire un ajustement pour cette différence en fréquence (i.e. 156,25 MHz et 171 MHz) en faisant quelques calculs pour les 6 dB/octave. Cela dit, elles sont suffisament proches pour que cela ne fasse qu’environ 1 dB de différence, ce qui dans tous les cas reste dans les marges d’erreur de la précision que je peux avoir en lisant les valeurs depuis le graphique de la datasheet de l’AD9912. En conséquence je vais ignorer cette compensation. Cette petite imprécision pourrait pencher en faveur du Si570 qui a ici la fréquence la plus basse.

Voilà donc une table des valeurs pour 156,25 MHz issues de la datasheet du Si570, et les valeurs correspondantes lues depuis le graphique de la datasheet de l’AD9912. Ces résultats peuvent être considérés comme étant reproductibles avec les deux composants à d’autres fréquences, une fois proprement mis à l’échelle avec 6 dB par octave (20 dB par décade). Les unités du bruit de phase sont en dBc/Hz.

Décalage Si570 AD9912
100 Hz -105 -125
1 kHz -122 -138
10 kHz -128 -148
100 kHz -135 -157
1 MHz -144 -162
10 MHz -147 -163

Ici, les mêmes résultats, présentés sur un graphique :

Comparaison du bruit de phase entre AD9912 et Si570

Ici, la conclusion est qu’un DDS de haut de gamme avec un oscillateur de référence de haute qualité et un bon design (AD9912 avec horloge à 1 GHz), peut dépasser les performances du Si570 de 20 dBc/Hz. Toutefois, je dirais que pour la majorité des applications les performances de bruit de phase du Si570 seront suffisantes, et probablement meilleures que celles de beaucoup de transceiver commerciaux “boîte noire” proposés sur le marché.

Finalement, grace aux excellentes performances de la technologie DDS, je déclare le DDS vainqueur pour cette épreuve.

La suite dans la partie 3. Pour les plus impatients vous pouvez lire la version originale en anglais (http://hanssummers NULL.com/ddssi570 NULL.html), sinon il faudra attendre la semaine prochaine…

Soirée d’étude de la propagation sur 20m

Hier j’ai fait reprendre du service à mon émetteur-récepteur SoftRock pour WSPR. Avec la fin de l’été je voulais voir comment évoluait la propagation au cours de la nuit.

Carte de réception 12 heures XV4Y en WSPR 20m le 28 août 2011 (http://xv4y NULL.radioclub NULL.asia/wp-content/uploads/2011/08/WSPR_20m_28aug2011 NULL.jpg)Première conclusion elle est en plutôt bonne forme! Le nombre de spots de réception est un des plus élevés que je n’ai jamais eu en une soirée. Dès que j’ai mis en route le système vers 17h locales (10h TU), les USA ont commencé à passer. C’est beaucoup plus tôt que ce que je ne pensais possible sur 20 mètres. Le chemin s’est maintenu quasiment toute la nuit mais avec bizarrement un seul report sur la côte est. En CW sur 17m les contacts sont possibles, je suis donc étonné de cette anomalie.

L’Europe apparaît beaucoup plus tard avec les premier contacts à l’ouest vers 13h TU (20h locales) et plus au sud vers 15h TU (23h du matin)… A noter que ces horaires sont pour le premier spot reçu, certainement par une station disposant de conditions décentes, et donc non représentative d’une possibilité de QSO en CW et encore moins en BLU. Le gros de la troupe arrive bien 2 heures plus tard, ce qui veut dire qu’à l’heure où l’Europe serait à ma portée je suis déjà au lit.

La propagation s’est maintenue toute la nuit et un nouveau pic au lever du soleil (22h30 TU, 5h30 loales) a permis de nouveaux spots avec les US. Je vais devoir éteindre WSPR pour rendre l’ordinateur à la comptable qui ne va pas tarder à arriver…

Bitx Multibandes version G6LBQ par M0EME

Voici une courte vidéo réalisée par M0EME de son Bitx G6BLQ (source Groupe Yahoo BitX). Ce sont ses premiers tests de réception, on peut voir les platines VFO externe et le filtre passe-bande minimaliste pour ce premier test. Le kit est disponible auprès de Sunil VU3SUA (http://www NULL.cqbitx NULL.blogspot NULL.com/).

Vidéo BitX G6LBQ par M0EME (http://www NULL.youtube NULL.com/watch?v=GYZsilBaG_w)